ECE 3510 Effect of initial conditions

See Bodson text, section 3.5
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Zero-state response Zero-input response of initial cond. p1



Initial conditions
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Observations
1. The total response is the sum of two independent components.

2. These values together fully describe the state

d d
of the 2nd-order system at time t = 0" (the initial state): y<0—> Ety<0_> X<0'> Etx<0_>
3. Similar denominator for both parts = Share poles = Similar responses

4. Response to Initial conditions always go to zero if system is BIBO.

5. Pole-zero cancellations in right-half plane can cause major problems with internal states of the system.

A simple first-order example >< t=0
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ECE 3510 Effect of initial conditions p3 N i 1=0
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ECE 3510 State Space

A completely different method where all math is done in the time-domain using linear algebra. See Bodson, section 3.6.

x(t) = The state vector (n x 1 matrix) j—x(t) = Time derivative of the state vector (n x 1 matrix)
t

n = order of the system

u(t) = The input vector (n, x 1 matrix) y(t) = The state vector (ny x 1 matrix)
ny =number of inputs ny = order of the system
A = The system matrix (n X n matrix) B = The input matrix (n x n, matrix)
C = The output matrix (ny X N matrix) D = The feed-forward matrix (ny X N, matrix)

State Equation: j—x(t) Ax(t) + B-ut)
t

A third-order, 2-input, 2-output system '
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Output Equation:  y(t) Cx(t) + D-u(t)
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State Equation: j—x(t)
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A third-order, single-input, single-output system 1 e+ e u(t)

Output Equation:  y(t) C-x(t) + D-u(t)
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Advantages of the state-space method
Easily handles multiple inputs, multiple outputs and initial conditions
Can be used with nonlinear systems
Can be used with time-varying systems
Reveals unstable systems that have stable transfer functions (pole-zero cancellations). You can determine:
Controllability: State variables can all be affected by the input
Observability: State variables are all "observable" from the output

Basis of Optimal control methods

Advantages and disadvantages of the classical frequency-domain method used in this class
Simpler to understand and model interconnected systems.
Rapidly provide stability and transient response information.
Easy to see the effects of varying system parameters to get a good design.

Limited to linear, time-invariant systems or systems that can be approximated as such. ECE 3510 State Space



