ECE 3510 Discrete-time Systems & Transfer Functions oo
Section 6.4 in Bodson text (p.200) Follow along in the Textbook
Ex.1 ($lgotinbank) = ($1had) + interest + ($ | add)

Define: y(k) = bank account balance at end of day k

x(k) = money deposited on day k /’\
o = interest earned in one day X(k) Z y(k)
y(k) = y(k- 1)+ a-y(k- 1)+ x(k)
. 1 1to ylk-1) D
Y(z) = z>Y(2)+az Y (z)+ X(2)
= LY (2)(1+ o)+ X(2)
Y(2)-z1Y(2)(1+ ) = X(2)
Y@l 2t = X X(2) —{ T Y(2)
Y(z) _ 1 z
H(z) = = —
X(2) [172’1-(1+a)} z 1
1+ z
H(z) = — 2
z- (1+a)
In general: H(z) = oapdat - Y(2) X(z) —= H(2) [ Y(2) = X(2)-H(z)
input X(2)

All Transfer - Function and Block - Diagrams we already know from Laplace work with

i z-transform
Serial - path systems transforms

X(2)-A(2)

X(z) —= A(2) B(z) —=Y(z2) = X(2)-A(z2)-B(2) Summers
K’_/_\/\J X (2) — X 1(2) + X 5(2)
+
X(z) —= A(2)'B(z) ——= Y(2) = X(2)-A(2)-B(2) X o(2)
Parallel - paths Feedback loop
X(z)-A +
A(Z) (Z) (Z) X(Z) @ A(Z) Y(Z)
X(z) — Y(2)= X(2)(A(2) + B(2)) -
5(2) X(2)B(2) B(2)

X(z) — (A(z)+B(2)) = Y(2)

A(2)
1+ A(z)-B(2)

X(z) — = = Y(2)
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Impulse Response

X(z)=1—= H(2)

— Y(2)

Input is an impulse

y(k)

X(z)-H(z)
h(k)

1-H(z) =

H(z)

= Impulse response = z - transform of h(Kk)

Sometimes the term "impulse response” is used in place of the term "transfer function”

FIR Finite Impulse Response (FIR) means that output goes to and stays at absolute 0 within a finite number of steps.

IR

FIR (Finite Impulse Response)
x(k)

"1 '01 2 3 4 5 6 7

IR (Infinite Impulse Response)

y(k T

Example 1

000000000000

Infinite Impulse Response (IIR) means output never completely goes away. (It may approach 0 like exponential decay)

=
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y(k) b

A4

o
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! POOPORVRROOOOODOON

y(Kk)
3 o)
o) o) example output
Impulsein — = H(z) |——= o
8 9 10 11 12 13 14 k E e s s s T e o o T 23 ek
y(k) = 2:x(k— 1)+ 3:x(k— 2) + 2:x(k— 4) + x(k— 5)
Y(z) = 27%X(z)+3Z%X(2) + 22 *X(2) + 7 >X(2)
5
H(z) = Y@ = <2-z’1+3-z’2+2-z’4+z’5>-z—
X(2) z
4 3
H(z) = 22 +3z2+2z+1 T
z o .
Poles of H(z) 4 N% ;
all at origin =~ ' \ .
" all poles
_ (KT many other possibilities
y(k) much higher interest y oo
T C T o)
oryearl;(/)ooooooo S o OO o Ooc
o)
oc 600000 + oo ©
B1ak ToT oG 56 75 owweEk & 1011 121

] ] ] ] ] ] ] ] ] ]
101 23 45%6 78 91011121314 K

éaxponential decay is still IR, even though it approaches 0, it never really reaches 0

D OO0

I

01 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334353637383940414243

Bounded-Input, Bounded-Output (BIBO) Stable

na
4546 47 4849 50 K
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A system is considered BIBO stable if the output in bounded for any bounded input.

A bounded input could have single poles on the unit circle at any location.
A bounded output may not have double poles on the unit circle or any poles outside the unit circle.
The output will have all the poles of the input plus all the poles of the system. (except in rare pole-zero cancellations.)

Therefore: A BIBO system may not have any poles on the or outside the unit circle.

Draw the poles on this unit circle _ 1
Ha(z) = ————
z:(z- 0.5)
Hp(z) = 1 ER
3
B B z
s 1 1
, AN H.(z) = Hy(z) =
; | @2 ¢ @2
/ \ 1 1
' \ H(z) = He(z) =
: . ¢ (z- 1) f (z+ 1)
\ 1
. ; H (@) = > _
\ K (z- 0.8+0.8j)(z- 0.8-0.8])
082+ 08%=1131 = |p|
(@ = =< _
I PR (z- 06+0.8j)(z- 06-0.8]))

J06%108°=1 = |p|

1
(z- 0.6+ 0.6)(z— 06— 0.6)

1/0.6%1+ 062=0849 = |p|

a,b, YES inside unit circle
c,d, NO outide

H I(Z) =

e,f, NO right on unit circle
g, NO outide
h, NO right on unit circle

i, YES inside unit circle
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Step Response

X +H(0)
Remember: Continuous-time (Laplace) Y «(9) = -mo Ye() = X iy H(0)-u(t) H(0) =DC Gain
z
So000.. yesterday
Today . ..
x(k k Step response 00000V ULOLL
(k) y(Kk) presp Ooooooooo
00°
X stepin —= H(z2) (= 0 .
m 0000000000000 (¢ P (2) Oo Example of a typical response
« o
=y 01 2 3 4 5 6 7 8 91011121314 1 01 2 3 4 5 6 7 8 '910111213141516171819202122232425 K
X(z) = X puk)
Steady-State Response & DC Gain For BIBO Systems
Y(z) = X(2)-H(z)
Complete step response = steady-state response + transient response
partial fraction expansion: Y(z) = Xy : = A + B, c, D
z-1 L(n) (a (n
divide both sides by  z @ oox g = A + | B,C, D2
z z-1 z-1 () () (n))z
multiply both sides by (z- 1) = XmpH(2) = A + £+£+£ 21
L) () ()] z
set z=1 X mH(1) = A
Y(Z) = Xm = m. + {B+C+D}

z-1 z-1 () () ()
steady-state transient response
response (all other poles are inside

unit circle (BIBO))
Yss(k) = X yH(1)-u(k)

The transient part would be
H(1) =DC Gain found by finishing the
partial-fraction expansion.
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Sinusoidal Response For BIBO Systems Qg

The sinusoidal response of a system is the output when the input is a sinusoidal i .S
(which starts at time = 0). E
. “Qy
sinusoidal input —= H(z) [ output = sinusoidal response Imaximum "? ‘|
(Steady-state) f
requency
For continuous time, we found H(jw) = \H(joo)\ /_ﬂﬂg) all jw are on the Imaginary axis R . xS

For discrete time, we find H(p) = \H(p)\ / H(p) where all p are on the unit circle
Qg Qg
e = e

Thatmeansthat p =1/Q = 1.

)= [nld9) Lngn
Use in the same way. Hie /= [He [ H(0)
Either:

Modify the magnitude and phase of the input to get the steady-state output, y.(k) (multiply magnitudes & add phases)

j-Q . . .
OR Y(z) = X(z)-H<e O> Which gives both steady-state and transient outputs.
to get a frequency response plot, allow to vary from O (or near 0) to the maximum frequency.

Example from text:

x(k) 5 y(k) = x(k) - x(k— 4) FIR system
- 4 4
L S I N I R Y(z) = X(2)-2%X(z) = X(2)-(1- 2%
Hz) = Y& g 4 -1 1
X(z) z4
\ A A1 (AP
H(z) = z-1 £ 7 Z z
Z4
. . &
| 20) 2 g4
0 (499" )
H<eJ °> = 1© ==
i Qg4
;- @ . 4 polesI @
.
magnitude
g -
0 4 /2 3n/4 T
o0 T
al T
30
These strange, repeating frequency-response curves are
07 angle oS : . .
common in digital signal processing. Take a class in DSP
7 to learn more. Here, this is about as deep as we're going.

o0+

The transient part would be found by partial-fraction expansion.

Initial Conditions
Initial Conditions are handled here much like they are in continuous time, with similar results. ECE 3510

In a BIBO system their effects dissappear quickly and are very similar to the impulse response. )
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Integration

y(k) = y(k- 1)+ x(k)
old sum + new
Y(2) = z5Y(2) + X(2)

Y(2)- 21Y(2) = X(2)

Accumulation

Y(2)(1-2%) = X(2)
H(z) = Y(z) _ -
X(z) 1-71  z-

. . .1
Compare to Laplace, where the transfer function for integration is —

S

In both cases this is also the transform of the unit step function.

That's because convolution of a signal with the unit step function is the same as integration.

Differentiation

The slope of any line segmentis  y(k)
Y(2)

Y(2)

[3 I4 F5 I6 H(Z)

Compare to Laplace

rise x(K) — x(k— 1)

run 1

X(2) -z 2 X(2)

X(2)-(1- 27
Y(2) I z-1
X(z) z

<

, Where the transfer function for integration is

In both cases this is the inverse of transform of integration.

In continuous time, diffential equations play a very important role in describing the world.

y(k)

In the digital, they become difference equations
Implementation
FIR Example: X(k) D D D D D
4 3
H(z) = 2.z + 3-25+ 2.z+1
z
= <2-z’1+ 3-2’2+ 274+ z’5> @
4 3
_ 272 +37+2z+1
X(2) 1 2 3
- -1 | 2XX 21 TR 1 2

221X

()

IR The very first example of an interest bearing bank account, go back and look.

>

x(K)

ylle-1)

y(k) =
y(k=1)-(1+ a)+ x(k)

X(z)

Discrete Systems
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Y(2)=
7 Y (@2) 1+ a) + X(2)




lIR General Example
Y(Z) b4'Z4+b3'ZB+b2'22+b1'2+b0 b4+b3'Zﬁl+b2'272+b1'273+b0'274

H(z) =
X(Z) Z4+ 33'23+ 32'22+ al'Z+ ao 1+ 33'27]:# 32'272+ a1-273+ 30'274

Y(z)-<1+ a3-z’l+ a2-z’2+ al-z’3+ ao-z’4> X(z)-<b4+ b3-z’1+ b 2-2’2+ b 1-2’3+ bo-z’4>
Y(z)= X(z)-<b4+ b3-z’l+ b 2-2’2+ b 1-2’3+ bo-z’4> - Y(z)-<a3-z’1+ a2-z’2+ al-z’3+ ao-z’4>

Direct Implementation

X(2) Y(2)

(o)
)
)
()

Minimal Implementation

b4'Z4+ b3'23+ b 2'22+ b 1'Z+ bo

Z4+ 33'23+ 32'22+ al'Z+ ao

X(2)

Y(2)

1 2 3 4
Xl = X(Z)fag'z -X 1732'2 -X 1731'2 -X 1730'2 Xl
X 1<1+ 33'27]:# 32'272+ a1-273+ 30'274> = X(Z)
Xl = X
1 1 2 3 4
+asz +a22 +alz +aoz
Y(z) = X1-<b4+b3-z’1+b2-z’2+b1-z’3+b0-z’4>
Y(z) = X -<b +b -z’1+b2-z’2+b1-z’3+b0-z’4>
2\ 4 3

1+ a3-z’l+ a2-z’2+ al-z’3+ ao-z’

Y(Z) B b4+ b3'Zﬁl+ b 2'272+ b 1'273+ b 0'274

" e

Check, it works

1 2 3 4
lragz tagyz ragz +apgz Discrete Svstems p7



Example From Spring 2011 Final a) Draw the block diagram of a simple direct implementation of the difference equation.
X(k-2)
3

w(K) = 2:x(K)+ _15x(k- 3) - %-y(k— 2)+%-y(kf 3)

y(k)

x(k) D D

b) Find the H(2) corresponding to the difference equation above. Show your work.

Y(z) = 2-X(Z)+é-X(z)-z’27 1.5-X(z)-z’37%{-Y(z).z*u%.y(z).zf2

Y(2)+ %-Y(z)-z’z— %-Y(z)-z*3 2:X(2) +é-X(z)-z’2— 15X(z)-z°

X(z)- 2+§z’27 1.5-23)

Y(z)- |1+ 172153
4 2

Y(z) _ 3

X(2) 1+E-z’273-z’3
4

H(z) = —
3 1 1

Z +7.277
4 2

2 12 1.5-z3< 3> 22817 15
3

c) Listthe poles of H(Z). Indicate multiple poles if there are any.
0.689 Polesat:  0.689

0=72"¢ %-zf % solvesto | 0.345+ 0.779] -0.345+ 0.779]
-0.345- 0.779; 0.345 - 0.779]

d) Is this system BIBO stable? Justify your answer.
- - 0689 < 1 1/0.345% + 0.779° = 0.85:< 1
Yes, all poles are inside the unit circle

Another Example from the same Final
Draw a minimal implementation of a system with the
following transfer function

3 find 3 _2
H(z) = -2+ (z-2)(z+4) _ Z+7+227-8

22+E— 2) z3+}-22— 2z
3

Z.

Continuous Time Discrete Time

Differential Equations Difference Equations
Laplace Transform z transform
Left-half plane / Right-half plane Inside unit circle / outside unit circle
Origin Point at (1,0), the right-most point on unit circle
Frequency increases as pole goes up, vertically Frequency increases as pole goes around unit circle
Extra z in numerator of most terms
Divide by z before partial-fraction expansion

Transfer functions and Block diagrams Pl

Same Lots of z1 blocks e

— Root Locus ,
Works exactly the same way, but results are interpreted very differently. NG o
Adequate ' " \-\, v
settling e '-.\
time Adequate
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