Non-strictly-proper transforms section 2.2.5, p.16 in Bodson text

What if the order of the numerator is equal to or even greater than the order of the denominator? $m \ge n$?

Example: $F(s) = \frac{2 \cdot s^2 + 100}{s^2 + 8 \cdot s + 41}$ m := 2 $= \frac{A}{s + 4 + 5 \cdot j}$ $+ \frac{B}{s + 4 - 5 \cdot j}$ $= \frac{A \cdot (s + 4 + 5 \cdot j) + B \cdot (s + 4 - 5 \cdot j)}{s^2 + 8 \cdot s + 41}$

First divide, before partial fraction expansion
$$s^2 + 8 \cdot s + 41$$
 $\sqrt{\frac{2}{2 \cdot s^2 + 0 \cdot s + 100}}$ $-2 \cdot \left(s^2 + 8 \cdot s + 41\right)$

"remainder"
$$0.s^2 - 16.s + 18$$

$$F(s) = \frac{2 \cdot s^2 + 100}{s^2 + 8 \cdot s + 41} = 2 + \frac{-16 \cdot s + 18}{s^2 + 8 \cdot s + 41}$$

$$f(t) = 2 \cdot \delta(t) + \left(\frac{82}{5} \cdot e^{-4 \cdot t} \cdot \sin(5 \cdot t) - 16 \cdot e^{-4 \cdot t} \cdot \cos(5 \cdot t)\right) \cdot u(t)$$

Delta functions are not very common in real life.

Non-strictly-proper transforms are just as common.

Properties of Signals Can you tell what f(t) must be just by looking at F(s)? YES, somewhat...

$$\frac{s+5}{s \cdot \left(s^2 + 4 \cdot s + 13\right) \cdot (s-10)}$$

s means a pole at origin, so output has some DC of unknown + value, and may converge to a non-zero (DC) value $(s^2 + 4 \cdot s + 13) = (s + 2 + 3 \cdot j) \cdot (s + 2 - 3 \cdot j)$ Decaying cosine wave of unknown phase or amplitude e^{-2t} decay rate, time constant = 1/2 sec, frequency = 3 rad/sec or $3/2\pi$ Hz (s-10) means signal is unbounded and (of course) doesn't converge

 $\frac{s+5}{s\cdot \left(s^2+64\right)\cdot (s+10)} \qquad \quad s+10 \quad \text{means an } \ e^{-10t} \ \text{decaying exponential is part of the signal}$

 $\left(s^2+64\right)=\left(s+8\cdot j\right)\cdot\left(s-8\cdot j\right)$ cosine wave of unknown phase or amplitude, frequency = 8 rad/sec or $4/\pi$ Hz means signal is bounded but doesn't converge

$$\frac{s+5}{s\cdot \left(s^2-4\cdot s+13\right)\cdot (s+10)}$$

 $s^2 - 4 \cdot s + 13 = (s - 2 + 3 \cdot j) \cdot (s - 2 - 3 \cdot j)$ Cosine wave of unknown phase and exponentially increasing amplitude

$$\frac{s+5}{s \cdot \left(s^2 + 4 \cdot s + 13\right)^2 \cdot (s+10)} = \frac{A}{s} + \frac{B \cdot (s+2) + C \cdot 3}{\left(s^2 + 4 \cdot s + 13\right)} + \frac{D \cdot \left[(s+2)^2 - 3^2\right] + E \cdot (6 \cdot (s+2))}{\left(s^2 + 4 \cdot s + 13\right)^2} + \frac{F}{(s+10)}$$

$$\left[A + B \cdot e^{2 \cdot t} \cdot \cos(3 \cdot t) + C \cdot \left(e^{2 \cdot t} \cdot \sin(3 \cdot t)\right) + D \cdot t \cdot e^{2 \cdot t} \cdot \cos(3 \cdot t) + E \cdot t \cdot e^{2 \cdot t} \cdot \sin(3 \cdot t)\right] \cdot u(t)$$

A and F cannot be zero, neither can both D and E $(D^2 + E^2 > 0)$

$$\frac{s+5}{s^3 \cdot \left(s^2 + 4 \cdot s + 13\right)^2 \cdot (s+10)^2}$$

 s^3 term results in a rising t^2 in time domain as well as possible DC and/or ramp