What if the order of the numerator is equal to or even greater than the order of the denominator? $\mathrm{m} \geq \mathrm{n}$ ?
Example: $\quad F(s)=\frac{2 \cdot s^{2}+100}{s^{2}+8 \cdot s+41} \quad \begin{aligned} & m:=2 \\ & n:=2\end{aligned}$
First divide, before partial fraction expansion $\quad s ^ { 2 } + 8 \cdot s + 4 1 \longdiv { 2 \cdot s ^ { 2 } + 0 \cdot s + 1 0 0 }$
"remainder"
$F(s)=\frac{2 \cdot s^{2}+100}{s^{2}+8 \cdot s+41}=$

$$
f(t)=
$$

Delta functions are not very common in real life.
Non-strictly-proper transforms are just as common.

## Properties of Signals

 Can you tell what $f(t)$ must be just by looking at $F(s)$ ? YES, somewhat...$\frac{s+5}{s \cdot\left(s^{2}+64\right) \cdot(s+10)}$
$\frac{s+5}{s \cdot\left(s^{2}-4 \cdot s+13\right) \cdot(s+10)}$
$\frac{s+5}{s \cdot\left(s^{2}+4 \cdot s+13\right)^{2} \cdot(s+10)}$
$\frac{s+5}{s^{3} \cdot\left(s^{2}+4 \cdot s+13\right)^{2} \cdot(s+10)^{2}}$

## ECE 3510 Finish Ch 2

