
ECE3510 Lab #5
PID Control

Objectives
The objective of this lab is to study basic design issues for proportional-
integral-derivative control laws. Emphasis is placed on transient
responses and steady-state errors. The first control problem consists in
the regulation of velocity for brush DC motors and is solved using
proportional-integral control. The second problem consists in the
regulation of position and requires derivative compensation in the form of
velocity feedback.

Introduction
In the lab on first-order systems, the response of a brush DC motor with the
voltage v (V or volts) considered as an input and the angular velocity • (rad/s or
s• 1) considered as an output was found to be approximately described by a
model

.
as

k
v(s)

� �����
P(s)

++
==== (8.16)

A proportional control law (P) consists in having

� �	�(rkv p −−== (8.17)

where r is the reference input for the velocity, in rad/s. kP is called the
proportional gain. The resulting closed-loop transfer function is given by

) kk a (s
kk

r(s)

(s) (s)P
P

P
CL ++++

==== ω
 (8.18)

Note that the closed-loop pole is given by • (a+ kkP) . In theory, it would appear
that the closed-loop pole could be moved arbitrarily far in the left-half plane
through the use of a sufficiently large proportional gain. The response of the
system could be made arbitrarily fast in that manner. As this lab will show, there
are limits on the gains that can be applied, however, these limits are due to
effects that are neglected in the model (such as the inductance of the motor and
the limit on the voltage), but are nevertheless present in the physical system.

Proportional-integral control for velocity tracking
The DC gain in (8.18) is equal to kkP / (a+ kkP). For large kP, this gain
approaches 1, but large gains are impractical. Therefore, it is useful to modify the
control law in order to adjust the DC gain. Specifically, replacing (8.17) by

����r(kkv Fp −−== (8.19)

yields a closed-loop transfer function

) kka (s
kkk

r(s)
(s) (s)P

P

PF
CL ++++

==== ωω
 (8.20)

The closed-loop pole is equal to the original one, but the DC gain can now be
adjusted to 1 by setting

P

P
F kk

) kk a (
 k ++

== (8.21)

We will call kF the feedforward gain.

Despite the capability of adjusting the feedforward gain kF in order to obtain a
DC gain of 1, perfect tracking of reference inputs is usually not achieved because
the parameters of the system are not exactly known or may vary, and because
disturbances may affect the response of the system. These problems can be
resolved through the use of a proportional-integral (PI) control law of the form

,dt)r(k��(rkv Ip ∫∫ −−++−−== ωω (8.22)

where kP and kI are called the proportional gain and the integral gain,
respectively. Then, the closed-loop transfer function becomes

IP
2

P

I
P

CL kks) kka (s

)
k
ks(kk

r(s)

(s) (s)P
++++++

++
==== ωω

(8.23)

The DC gain is equal to 1, regardless of what the parameters of the system or of
the control law are. Of course, it should be remembered that the DC gain reflects
the steady-state conditions only if the closed-loop system is stable, i.e., if the
poles of (8.23) are all in the open left-half plane. Generally, the responses cannot
be made as fast for a PI control law, so that the benefit of a zero steady-state
error has to be weighted against that of the speed of response.

Proportional-integral-derivative control for position tracking
To control position, instead of velocity, it is common to use proportional-integral-
derivative (PID) control law

 .
� �

(r
dt
dkdt

���
(rk

���
(rkv DIp −+−+−= ∫ (8.24)

Note that the derivative term can be viewed as a proportional feedback acting on
the velocity error. In general, derivative feedback improves the stability and the
damping of the closed-loop system.

In practice, the control law (8.24) is often modified in two ways. First, the
derivative action is applied only to the output • , and not to the reference input.
This is done because reference inputs often change in steps, and the derivative
is then either zero or not defined (infinite).
Second, a feedforward gain is often applied to the reference input. This is not
done to adjust the DC gain (as for the control law without integral term), but

rather to place the zero of the closed-loop transfer function. This will be explained
shortly. The modified control law is given by

.
�

dt
dkdt

���
(rk

���
r(kkv DIFp −−+−= ∫ (8.25)

The closed-loop transfer function for the system with transfer function

,
)as(s

k
v(s)

� �����
P(s)

+
== (8.26)

and the PID control law (8.25), is given by

IP
2

D
3

PF

I
PF

CL kkskk s) kka (s

)
kk

k
s(kkk

r(s)
(s) (s)P

++++++++

++
==== θθ

(8.27)

Note that the closed-loop transfer function (8.27) has three poles. There is also a
zero at • kI / (kF kP). For the original control law with kF = 1, the zero may have a
small magnitude compared to the closed-loop poles, yielding overshoot in the
step response even if the closed-loop poles were well-damped. Reducing the
value of kF allows one to push the zero farther in the left-half plane and to
improve the step response.

Pre-lab
Derive equation (8.20) and calculate values of kP and kF such that the closed-
loop pole is at an arbitrary location • b and such that the DC gain is 1. Specialize
the results to the cases b = 2a, b = 6a, and b = 11a. Calculate the specific values
of the gains for the DC motor (a = 100, k = 1000) for all three cases.

Derive equation (8.23) and calculate values of kP and kI such that the closed-loop
poles are both at an arbitrary location • b. Specialize the results to the case
where b = a, and to the specific values of the DC motor.

Derive the transfer function given in (8.27) and calculate the values of the PID
parameters such that all three poles are placed at some • b. Calculate the
parameters that correspond to b = a, and also for the specific motor parameters
(a = 100, k = 1000).

Experiments
Equipment needed:

1. Brush DC motor
2. Dual power amplifier
3. Voltmeter
4. Cable rack
5. DSpace kit which includes an encoder cable and I/O breakout box.

Preliminary testing
Carry out the same testing procedure as in the lab on first-order systems.

Lab overview
For this experiment control of the velocity of the motor will be explored using
Proportional and Proportional-Integral (PI) control. Control of the motor position
will be explored using Proportional-Integral-Differential (PID) control.

The dSpace experiment designed to perform this lab is setup to allow a choice
between the different control types. Values for each of the proportional gains can
also be entered into the Layout. A reference value of either speed or position is
available to be used with the control law type.

In the case of the PID controller, you will implement the equation for the control
law by modifying the underlying C/C++ code and rebuilding the software that will
be provided to the board.

Proportional Control
Load the experiment PID_control_DC_motor, It should open with the proportional
control type selected. The reference input for the Proportional control is a
reference speed, given in RPM. It should be noted that any gains not used for the
selected control law are ignored.

First, experiment with proportional control by setting kP and kF according to the
pre-lab calculations, and apply a reference input that steps from 0 to 1000 rpm
and then to 2000 rpm and then back to zero. Repeat the experiment for all three
cases, capture the data and plot the results. Discuss what happens when the
gain kP becomes large?

Proportional-Integral Control
Change the control type to “PI” and apply the values calculated for the PI control
law, setting kF = 1 in the experiment. You may also experiment with other values
of kP and kI , in particular those resulting in faster responses. Plot the results for
your best experiment.

Working with Dspace software Design
The programs used by the dSpace board to implement experiments are created
using C/C++ code and a compiler/linker provided with the system. For each of
the labs the code for an experiment is available in main.c and driver.c. All of the
control algorithms and the main loop are found in the main.c file, which will be
referred to as the “lab code”. Any code that supports the hardware interface to
the system is found in driver.c file, which will be called the “driver code”.

Looking at the lab code it can be broken down in to three sections. The first
section contains global variables that are used for connection to the buttons, plot
windows and displays in the layout window. The next section is the “main()”
function that is processed when the board is loaded. Last is a function called

“user_isr()”, this function contains the logic and equations that implement the
control laws for the experiments.

For an embedded system, like dSpace, most of the code that does the work is
not located in the “main()” function. The main includes initializations for the
system that sets up the framework of hardware interrupts or ISR’s. An ISR is a
signal that tells the system that data is ready to be sent/received or that a certain
function should be performed.

In the case of the lab experiments, a built-in timer provides an ISR every 2 msec
to perform the operations of getting the current position for the incremental
encoder (INC1) and setting the output value of ADCH1. The function “isr_srt()” in
the driver code performs the commands to read and write the encoder and ADC
respectively. “Isr_srt()” also runs the function from the lab code “user_isr()” which
performs the control processing. The system sits and waits for the next ISR.

The lab code and driver code must be compiled/linked to be used by the system.
This requires a MSDOS prompt window. A shortcut to MSDOS is provided in the
directory with the lab experiments. From the DOS prompt the program
“down1104.exe” can be used to compile/link and load the program for the
system. The syntax for this command is:

> down1104 filename1.c fileaname2.c …
All the .c files created to implement the experiment software must be listed as
arguments to down1104.exe. In turn, they are used to generate a .ppc file that
contains the machine code used on the board. Because of how the experiments
are set up the first filename argument should be main.c followed by driver.c. With
a valid execute of “down1104” the board should be loaded and ready to perform
experiments.

Proportional-Integral-Derivative (PID) Control
Adjust the file main.c in order to implement the PID control law for position. All of
the required variables and the location of the control law are outlines inside the
user_isr() function of the “.c” file.

As a hint, you should remember the relations between position and velocity. Both
position and velocity are provided with radian measure by the encoder. For the
case of integration in a discrete system, think of it as a Riemann Sum. Look at
the control law for the PI controller to get an idea of how integration is performed
in that case.

Once the experiment is compiled, linked and downloaded, you may apply the
calculated values of the PID parameters, with kF = 1, and a reference input step
of 90 degrees. The settling time should be approximately 100ms, with an
overshoot response. Adjusting the parameter kF should yield a better response.
Plot the results for a few values of kF on a single graph. Indicate what value of kF

that gives the best response (minimum settling time with negligible overshoot).

DEMONSTRATE YOUR FINAL EXPERIMENT TO THE TA

Report at a glance
For this lab a written formal report will be required.
Be sure to include:

• Pre-lab calculations.
• Plots of the responses with the proportional control law, for the three

cases.
• Plot of the response with the proportional-integral control law, with the

values of the gains that were used.
• Plot of responses with PID control law, and a few values of kF .
• Written note from the TA that the program worked.
• Comments.

