Plan to attend ME Design Day, next Thur in the Union Ballroom

1. Problem 5.13 b \& new c \& $d(p .149)$ in the text.
b) Bode plots of the open-loop transfer function of a feedback system are shown below, with the detail from 1 to 10 $\mathrm{rad} / \mathrm{sec}$ shown on the left. For this system:

- How much can the open-loop gain be changed (increased and/or decreased) before the closed-loop system becomes unstable?
- What is a rough estimate of the phase margin of the feedback system? Show on the graph how the results are obtained. The numerical results do not have to be precise.
- How much time delay can there be in feedback system before the phase margin disappears.

c) For the system of part (a), give the steady-state response of the open-loop system an input $x(t)=4 \cos (10 t)$. express the answer in the time-domain.
d) Give the steady-state response of the closed-loop system for the same input. Hint: closed loop output is: input• $\frac{G(10 \cdot j)}{1+G(10 \cdot j)}$

ECE 3510 Homework Bd4
 p. 2

2. Like problem 5.9a (p.147) in the Bodson text.
a) Give the gain margin, the phase margin and the delay margin of the system whose Bode plots are shown at right (the plots are for the open-loop transfer function and the closed-loop transfer function is assumed to be stable).

Add another sheet of paper the following:
3. A system has a delay of $\mathrm{D}:=0.01 \cdot \mathrm{sec}$ How many degrees of phase does this represent at:
a) $\mathrm{f}:=1 \cdot \mathrm{~Hz}$
$\mathrm{f}:=10 \cdot \mathrm{~Hz}$
$\mathrm{f}:=100 \cdot \mathrm{~Hz}$
$\mathrm{f}:=1 \cdot \mathrm{kHz}$
b) $\omega:=1 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
$\omega:=10 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
$\omega:=100 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
$\omega:=1000 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
4. a) If the phase response of a pure time delay were plotted on linear phase vs. linear frequency plot, what would be the shape of the curve?
b) If the phase response of a pure time delay were plotted on linear phase vs. logarithmic frequency plot, what would be the shape of the curve?

Plan to attend ME Design Day, next Thur in the Union Ballroom

Answers

1. b) Gain may be increased by $\simeq 2 \mathrm{~dB}$ and reduced by $\simeq 4.4 \mathrm{~dB} . \quad \mathrm{PM} \simeq 13 \cdot \mathrm{deg} \quad \mathrm{DM} \simeq 36 \cdot \mathrm{~ms}$
c) $2 \cdot \cos (10 \cdot t+158 \cdot \mathrm{deg})$
d) $3.5 \cdot \cos (10 \cdot t+140 \cdot \mathrm{deg})$
2. a) $\mathrm{GM} \simeq 30 \cdot \mathrm{~dB} \quad \mathrm{PM} \simeq 40 \cdot \mathrm{deg} \quad \mathrm{DM} \simeq 50 \cdot \mathrm{~ms}$
3. a) $3.6 \cdot \mathrm{deg} \quad 36 \cdot \mathrm{deg} \quad 360 \cdot \mathrm{deg} \quad 3600 \cdot \mathrm{deg} \quad$ b) $0.573 \cdot \mathrm{deg} \quad 5.73 \cdot \mathrm{deg} \quad 57.3 \cdot \mathrm{deg} \quad 573 \cdot \mathrm{deg}$
4. a) A straight line of negative slope, $\omega \mathrm{D}$, where D is the time delay.
b) A negative sloping line with a slope of $\omega \mathrm{D}$. Since the frequency increases by a factor of 10 each decade, so would the downward slope of the line.
