ECE 3510 homework #4

1. For each feedback system shown below, find the transfer function of the whole system, with feedback.

s + 30

function critically damped.

d) If K is more than this value the system will be:

underdamped or overdamped

e) Does the transfer function have a zero? If yes, what is it?

- i) Does the transfer function have a zero? If yes, what is it?
- 2. Problem 3.2b, p.50 in Bodson text
- 3. Problem 3.3, p.50 in Bodson text As part of your work to reach a solution, draw the pole diagram for each.

<u>Answers</u>

1. a)	$\frac{30 \cdot s + 1800}{s^2 + 68 \cdot s + 510} \qquad \qquad \text{b}$	$\frac{K \cdot 24 \cdot s \cdot (s+30)}{s^2 + 40 \cdot s + 300 + 2 \cdot K}$	c) 50	d) underdam	ped e) 0,-30
f)	$G \cdot 80 \cdot s + G \cdot 4800$		3.	<u>Stable</u>	Problem input
	$K_{1} \cdot \frac{G \cdot 80 \cdot s + G \cdot 4800}{s^{2} + 90 \cdot s + 800 \cdot G + 1800}$	g) 0.28125	a)	yes	
h) overdamped		i) - 60	b)	no	$\cos(2 \cdot t)$
		,	c)	yes	
2.	$\frac{\mathbf{H}_{1}\cdot\mathbf{H}_{4}+\mathbf{H}_{2}\cdot\mathbf{H}_{4}-\mathbf{H}_{1}\cdot\mathbf{H}_{2}\cdot\mathbf{H}_{3}+\mathbf{H}_{1}\cdot\mathbf{H}_{3}}{\mathbf{H}_{1}\cdot\mathbf{H}_{3}+\mathbf{H}_{1}\cdot\mathbf{H}_{3}}$		d)	no	any input, even noise
	$1 + H_1$		e)	no	1
ECE 3510 homework # 4			f)	no	1