Homework should be turned in to the 3510 homework locker by 5:00pm on the due date. Solutions will be posted in a glass case west of the ECE office.

Good Transform tables:

Nielson p.595 (7th ed.,p.547), Lathi p.372, Bodson p.5.

Good Property tables:

Nielson p.601 (7th ed.,p.553), Lathi p.389, Bodson p.8.

For problems 1 & 2:

Don't just write down what the table shows.

You must show some work of your own.

You may use simpler table entries together with properties of the Laplace transform.

- 1. Find the Laplace transform of the following functions:
 - a) u(t)
 - b) $\sin(\omega \cdot t) \cdot u(t)$
 - c) $t \cdot u(t)$
- 2. Find the Laplace transform of the following functions:

a)
$$e^{-at} \cdot \sin(\omega \cdot t) \cdot u(t)$$

- b) $e^{-at} \cdot \cos(\omega \cdot t) \cdot u(t)$
- 3. Find the inverse Laplace transform of each of the following functions:

Use partial fraction expansion and the tables.

a)
$$F(s) = \frac{1}{s^2 + 5 \cdot s + 6}$$

b)
$$F(s) = \frac{s-1}{s \cdot (s+2)}$$

c)
$$F(s) = \frac{3 \cdot s}{(s^2 + 1) \cdot (s^2 + 4)}$$

d)
$$F(s) = \frac{1}{(s+2)\cdot(s+1)^2}$$

Answers

1. a)
$$\frac{1}{s}$$

b)
$$\frac{\omega}{s^2 + \omega^2}$$

c)
$$\frac{1}{s^2}$$

2. a)
$$\frac{\omega}{\left(s+a\right)^2+\omega^2}$$

b)
$$\frac{(s+a)}{(s+a)^2+\omega^2}$$

3. a)
$$\left(e^{-2\cdot t} - e^{-3\cdot t}\right) \cdot u(t)$$

b)
$$\left(\frac{3}{2} \cdot e^{-2 \cdot t} - \frac{1}{2}\right) \cdot u(t)$$

c)
$$(\cos(t) - \cos(2t)) \cdot u(t)$$

d)
$$\left(e^{-2\cdot t} + t\cdot e^{-t} - e^{-t}\right)\cdot u(t)$$