ECE 3510 Final Exam Study Guide Review, 2:00 Thur, 4/26, Final: 10:30 Fri, 4/27/18 Both in normal classroom

The exam will be closed book, but you may use the information passed out earlier.

Download old exams from HW page on class web site.

The exam will cover

- 1. Review the questions you were asked on the homeworks.
- 2. Laplace transforms, be prepared to look up and adapt table entries Initial and final values
- 3. Inverse Laplace transforms (partial fractions)
- 4. Relationship of signals to pole locations Figs 2.1 & 2.2 on page 7
- 5. Boundedness and convergence of signals

Bounded if all poles in LHP, no double poles on $j \omega \text{-axis}$

Converges to $0 \mbox{ if all poles LHP}. \mbox{ Converges to a non-zero value if a single pole is at zero$

6. H(s) of circuits

Z(s) R Ls
$$\frac{1}{Cs}$$
 Be able to find $\frac{V_{out}(s)}{V_{in}(s)}$

- 7. Block Diagrams & their transfer functions
- BIBO Stability (Systems)
 BIBO if all poles in LHP, no poles on jω-axis
- 9. Impulse & step responses $h(t) = \frac{1}{-} H(s)$
- 10. Steady-state (DC gain = H(0)) & transient step responses
- 11. Effects of pole locations on step response, see Fig 3.12, p.36.
- 12. Sinusoidal responses, effects of poles & zeros, etc. Steady-state AC analysis to get $Y(j\omega) \& y_{ss}(t)$ (Sinusoidal steady-state transfer function = H(j ω))
- 13. Transient sinusoidal response

You should be ready to do partial fraction expansion to the first (transient) term from: $H(s) = x - A \cdot \frac{s}{s^2 + \omega^2}$ or $B \cdot \frac{\omega}{s^2 + \omega^2}$

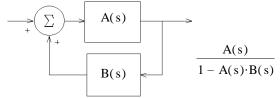
14. Effect of initial conditions

$$Y(s) = \frac{b_2 \cdot s^2 + b_1 \cdot s + b_0}{s^2 + a_1 \cdot s + a_0} \cdot X(s) + \frac{s \cdot y(0) + \frac{d}{dt}y(0) + a_1 \cdot y(0) - b_2 \cdot s \cdot x(0) - b_2 \cdot s \cdot \frac{d}{dt}x(0) - b_1 \cdot s \cdot x(0)}{s^2 + a_1 \cdot s + a_0}$$

 $A \cdot \cos(\omega t)$

May ask question like points on p. 43

May give H(s), a's & b's x(0)s and y(0)s. and ask for effect of initial conditions



Review voltage dividers and current dividers

Review complex math relations Conversions Add & Subtract Multiply and divide

 $B \cdot sin(\omega t)$

Standard feedback loop transfer function

or any other output over input.

ECE 3510 Final Exam Study Guide p2

15. The advantages of state space over classical frequency-domain techniques.					
Multiple input / multiple output systems					
Can model nonlinear systems					
Can model time varying systems					
Can be used to design optimal control systems					
Can determine controllability and observability					
16. Electrical analogies of mechanical systems, particularly translational and rotational systems.					
Review the handout and homeworks 8 & 9. Open-book part only.					
7. Control system characteristics and the objectives of a "good" control system. See pgs. 59 - 60 Stable Tracking fast smooth minimum error (often measured in steady state) Reject disturbances Insensitive to plant variations Tolerant of noise Be able to relate these to poles and zeros on the real and Imaginary axis (where possible)					
18. Elimination of steady-state error, p. 61. 1 System stable					
DC 2 $C(s)$ or $P(s)$ has pole @ 0					
3 C(s) or P(s) No zero @ 0					
19. Rejection of constant disturbances, p. 63. 1 System stable					
	2 $C(s)$ has pole @ 0				
$2 \circ C(s)$ find polo $\otimes c$ 3 or $P(s)$ has zero $@ 0$ But bad for above					
 20. Root - Locus method a) Main rules and concepts (Memorize) 1. Root-locus plots are symmetric about the real axis. 					
On the real axis, spaces left of an odd number of O-L poles and zeros are always part of the locus. (Essentially, every other space on the real axis (counting leftward) is part of the plot.)					
3. Each O-L pole originates ($k = 0$) one branch. (n)					
Each O-L zero terminates ($k = \infty$) one branch. (m)					
All remaining branches go to ∞ . $(n-m)$ These remaining branches approach asymptotes as they go to ∞ . $\sum OLpoles - \sum OLzeros$					
4. The origin of the asymptotes is the centroid. $centroid = \sigma = \frac{all all}{centroid}$					
5. The angles of the asymptotes (# poles - # zeros)					
<u>n - m</u> angles (degrees)					
2 90 270					
3 60 180 300					
4 45 135 225 315					
6. The angles of departure (and arrival) of the locus are almost always: OR: ${\longleftarrow}$ OR: ${\longleftarrow}$					
7. Gain at any point on the root locus: $k = \frac{1}{ G(s) }$ ECE 3510 Final Exam Study Guide	p2				

ECE 3510 Final Exam Study Guide p3

8. Complex angle of G(s) at any point on the root locus

cus:
$$\arg(G(s)) = \arg(N(s)) - \arg(D(s)) = \pm 180^{\circ}, \pm 540^{\circ}, \dots$$

Or: $\arg\left(\frac{1}{G(s)}\right) = \arg(D(s)) - \arg(N(s)) = \pm 180^{\circ}, \pm 540^{\circ}, \dots$

 $\sum_{a=1}^{n} \frac{1}{\left(s+a_{i}\right)} = \sum_{a=1}^{n} \frac{1}{\left(s+a_{i}\right)}$

b) Additional Root locus rules. Review the handout.

- 1. The breakaway points are also solutions to:
- 2. Departure angles from complex poles:

c) Root Locus general, Interpretation and design

- 1. Concepts of what a root locus plot is and what it tells you. Movement of poles
- 2. Good vs bad, fast response vs slow, OK damping vs bad.
- 3. Important conclusions from root locus, section 4.4.5, p. 84.
- 4. Compensators, Bring your crib sheet.

Know pole & zero locations of P, PI, lag, PD, lead & PID Compensators.

PI and Lag, purpose and design, ties in with steady-state error

PD and Lead, purpose and design ties in with root locus angle rules

PID & lead-lag design order & why

Compensator Circuits

PID tuning, memorize some basic ideas, like why you would need to do it.

- d) Unconventional root-locus
- 21. Ladder logic

Material new to the Final: ~1/2 to 2/3 OF EXAM

1. Bode Plots

Be able to draw both magnitude and phase plots

Basic rules

Complex poles an zeros $s^2 + 2 \cdot \zeta \cdot \omega_n \cdot s + \omega_n^2 = (s+a)^2 + b^2 = s^2 + 2 \cdot a \cdot s + a^2 + b^2$ Open-book part only. natural frequency $\omega_n = \sqrt{a^2 + b^2}$ damping factor $\zeta = \frac{a}{\omega_n}$ max at approx ω_n , $\frac{1}{2 \cdot \zeta}$ $20 \cdot \log\left(\frac{1}{2 \cdot \zeta}\right)$ dB Bode to transfer function

(simple Bode plot in exam 3)

GM, PM & DM

Estimate overshoot from phase margin and delay (HW NqBd) $\zeta \simeq \frac{PM}{100 \cdot deg}$ (PM in degrees and may include delay effects)

2. Nyquist plots

You may be asked to draw a simple one. At minimum you should; Be able to find the start point (DC gain ($s = 0 = \omega$)) from the transfer function) Find the final value ($\omega = \infty$) and the approach angle to the final value.

Concepts of what a Nyquist plot is and what it tells you. Z = N + P

Be able to count encirclements, with or without the $\omega < 0$ part of the plot.

Be able to handle poles at the origin.

Be able to find GM & PM and basic magnitude and phase information from the plot

ECE 3510 Final Exam Study Guide p3

Open-book part only.

ECE	3510 Final Exam Stud	y Guide p4	<u>f(k)</u>	<u>F(z)</u>
4. Dis	screte signals x(k)		δ(k)	1
5. z-t	transform $X(z) = \sum_{n=1}^{\infty}$		u(k)	$\frac{z}{z-1}$
	k = Finite-length signals have all pole	-	k·u(k)	$\frac{z}{\left(z-1\right)^2}$
6. Re	Relationship of signals to pole locations, Fig 6.9, p159.	one Fig 6 0 p150	p^k	$\frac{z}{z-p}$
	lines of constant damping	$\frac{1}{-\ln(\mathbf{p})}$	k·p ^k	$\frac{\mathbf{p} \cdot \mathbf{z}}{\left(\mathbf{z} - \mathbf{p}\right)^2}$
	operties of the z-transform linear Right-shift = delay = multiply by	$z^{-1} = \frac{1}{2}$	$\cos\left(\Omega_{0}\cdot\mathbf{k}\right)$	$\frac{z \cdot \left(z - \cos\left(\Omega_{0}\right)\right)}{z^{2} - 2 \cdot \cos\left(\Omega_{0}\right) \cdot z + 1}$
	Left-shift = advance = multiply by	Z	$\sin(\Omega_{0}\cdot\mathbf{k})$	$\frac{z \cdot \sin\left(\Omega_{o}\right)}{z^{2} - 2 \cdot \cos\left(\Omega_{o}\right) \cdot z + 1}$
	Initial value = $x(0) = X(\infty)$ Final value (DC) = $x(\infty) = (z - z)$	$\begin{array}{c c}1 & & \\ 1 & \\ \end{array} \\ X(z) & \\ & \\ z & \\ z & \\ \end{array}$	$(\mathbf{p})^{\mathbf{k}} \cdot \cos\left(\theta_{\mathbf{p}} \cdot \mathbf{k}\right)$	$\frac{z \cdot \left(z - \mathbf{p} \cdot \cos(\theta_{\mathbf{p}})\right)}{z^2 - 2 \cdot \mathbf{p} \cdot \cos(\theta_{\mathbf{p}}) \cdot z + (\mathbf{p})^2}$
fra	verse z-transforms (partial actions & long division) Divide by z first: $\frac{X(z)}{z}$	Poles on real axis (not at zero):	$(\mathbf{p})^{\mathbf{k}} \cdot \sin\left(\theta_{\mathbf{p}} \cdot \mathbf{k}\right)$	$\frac{z \cdot \left(\left p \right \cdot \sin\left(\theta_{p}\right) \right)}{z^{2} - 2 \cdot \left p \right \cdot \cos\left(\theta_{p}\right) \cdot z + \left(\left p \right \right)^{2}}$
L			Open-book or table given.	
	Open-book or table given.	Complex poles:	<u>F(z)</u>	<u>f(k)</u>
			А	$A \cdot \delta(k)$
			$\frac{\mathbf{B} \cdot \mathbf{z}}{(\mathbf{z} - \mathbf{p})}$	$\mathbf{B} \cdot \mathbf{p}^{\mathbf{k}}$

$$\frac{\mathbf{B}\cdot\mathbf{z}}{(\mathbf{z}-\mathbf{p})} + \frac{\mathbf{B}\cdot\mathbf{z}}{\left(\mathbf{z}-\mathbf{p}\right)} \qquad 2\cdot\left|\mathbf{B}\right|\cdot\left(\left|\mathbf{p}\right|\right)^{k}\cdot\cos\left(\theta_{\mathbf{p}}\cdot\mathbf{k}+\theta_{\mathbf{B}}\right)$$

 Nyquist sampling criterion, at least twice the highest signal frequency Boundedness and convergence of signals, relate to continuous-time signals Bounded if all poles in inside unit circle, no double poles on unit circle

10. Converges to 0 if all poles inside unit circle. Converges to a non-zero value if a single pole is at 1

- 11. Difference equations, be able to get H(z)
- 12. Discrete-time systems, FIR (all poles at zero), IIR (some poles not at zero)
- 13. BIBO Stability, all poles inside unit circle.
- 14. Step & Sinusoidal responses, effects of poles & zeros, etc.

DC gain = H(1) sinusoidal: $H\left(e^{j \cdot \Omega} o\right) = |H| \underline{/\theta}_{H}$

multiply magnitudes and add angles just like Laplace only j ω is replaced with

 $e^{j\cdot\Omega}{}_{o}$

- 15. Initial Conditions, p. 179 Open-book part only.
- 16. Implementations, p180 183, be able to go back and forth to H(z) Open-book part only.
- 17. Same Feedback system as in continuous-time and Root locus works the same but is interpreted very differently.

ECE 3510 Final Exam Study Guide p4