ECE 3510 Final Exam Information

Bode Plots

See also Exam 3 Information sheet

- b) At complex poles and zeroes.
- if complex pole is expressed:

$$\left(s^{2} + 2 \cdot \zeta \cdot \omega_{n} \cdot s + \omega_{n}^{2}\right)$$

natural frequency $\omega_{n} =$

atural frequency
$$\omega_n = \sqrt{\omega_n^2}$$

damping factor:
$$\zeta = \frac{2 \cdot \zeta \cdot \omega_n}{2 \cdot \omega_n}$$

if complex pole is expressed:

$$\left[(s+a)^2 + b^2 \right] = s^2 + 2 \cdot a \cdot s + \left(a^2 + b^2 \right)$$

natural
frequency $\omega_n = \sqrt{a^2 + b^2}$

damping factor
$$\zeta = \frac{a}{\omega_n}$$

Near ω_n , the difference between peak & straight lines is: $\frac{1}{2\cdot\zeta}$ in dB: $20\cdot\log\left(\frac{1}{2\cdot\zeta}\right)$

For angles, see drawing at right.

GM, **PM**, **& DM** Gain Margin (GM):

Find where angle plot crosses $180^{\rm o}$. GM is ${\rm -dB}$ of mag plot at same freq.

Phase Margin (PM): Find where mag plot crosses 0dB. PM is 180° + phase angle at same freq.

Delay Margin (DM): $T = \frac{2 \cdot \pi}{\omega_{PM}} \quad OR \quad \frac{1}{f_{PM}} \quad DM = \left(\frac{PM}{360 \cdot \text{deg}}\right) \cdot T$

Bode Plot to Transfer Function

Draw best-fit straight lines at slopes of 0dB/dec, $\pm 20dB/dec$, $\pm 40dB/dec$, $\pm 60dB/dec$, etc..

Essentially reverse the plot procedure.

Find the magnitude at some part of the plot (usually a flat part) & find any multiplying constant needed.

This sheet and the Information sheets from Exams 1 - 3 are the only reference materials allowed at exam. Bring this page. You **may add** whatever you want to this sheet (both sides).

Converge to 0 if all poles inside unit circle. Converge to a non-zero value if a single pole is at 1

Difference equations, be able to get H(z)

Discrete-time systems, FIR (all poles at zero), IIR (some poles not at zero)

BIBO Stability, all poles inside unit circle.

Step & Sinusoidal responses, effects of poles & zeros, etc.

DC gain = H(1) sinusoidal: $H(e^{j \cdot \Omega} o) = |H| \underline{/\theta}_{H}$ multiply magnitudes and add angles Same Feedback system as in continuous-time and Root locus works the same but is interpreted very differently.