Exam 3 Study Guide

The exam will be **closed book**, but you may use the colored sheets from exam 1 and 2 the new one for exam 3.

Download old exams from HW page on class web site.

The exam will cover

1. Root - Locus method

a) Main rules (memorize, could be in closed-book part)

b) Gain at any point on the root locus: $k = \frac{1}{|G(s)|}$ (both parts)

c) Additional rules. Open-book part only.

The breakaway points are also solutions to:

$$\sum_{all} \frac{1}{\left(s + -p_{i}\right)} = \sum_{all} \frac{1}{\left(s + -z_{i}\right)}$$
 Open-book part only.

Phase angle of G(s) at any point on the root locus

us:

$$arg(G(s)) = arg(N(s)) - arg(D(s)) = \pm 180^{\circ}, \pm 540^{\circ}, \dots$$
Or:

$$arg\left(\frac{1}{G(s)}\right) = arg(D(s)) - arg(N(s)) = \pm 180^{\circ}, \pm 540^{\circ}, \dots$$

Departure angles from complex poles:

Example. 180 - 90 - 153.4 + 135 = 71.6 deg

2. Root - Locus Interpretation and design

Concepts of what a root locus plot is and what it tells you. Movement of poles

Good vs bad, fast response vs slow, OK damping vs bad.

Compensators Know pole & zero locations of P, PI, lag, PD, lead & PID Compensators. PI and Lag, purpose and design, ties in with steady-state error

PD and Lead, purpose and design ties in with root locus angle rules

3. Unconventional root-locus

- 4. Phase-locked loops
- Material from labs How does it work
- How and why did you use an unconventional root-locus The loop block diagram
- 5. Compensator circuits & Instrumentation amplifier
- 6. PID tuning, memorize some basic ideas, like why you would need to do it.
- 7. Concentrate on Homeworks RL1 FC2 I'll scan through for problems
- 8. Up to Lab 7 (Advanced PLL)
- 9. Download old exams from HW page on class web site. But remember, they may cover more than we did in our class.

Homework for ME Design Day has been canceled due to conflict with ECE Technical Open House BUT, If you get a chance:

Go to ME Design day in the Union on Thursday, 4/20 sometime from 11:00 to 3:00. See www.mech.utah.edu/events/designday.html Look for:

- 1. Control systems and/or systems with feedback.
- 2. Senior project that impress you.
- 3. Competitions (main mechatronics robot competition, 1:00 3:00). ECE 3510 Exam 3 Study Guide