ECE 3510 homework # 15 corrections & Exam 3 Study Guide Hw 15 Due date changed to: Thur, 4/6/06

Corrections

Hint given for 1d) should have been for 2e).

Answers

1. a) $GM \simeq 30 \cdot dB$ $PM \simeq 40 \cdot deg$ b) yes c) $0 < g < \frac{1}{3}$, $\frac{1}{2} < g < \frac{3}{2}$ or g > 3d) Need 3 CCW encirclements of -1 2. a) yes b) $GM \simeq 2$ (30 $\cdot dB$) $PM \simeq 90 \cdot deg$ c) 4 d) 4, $3 \cdot \cos(t - 90 \cdot deg)$, $-2 \cdot \cos(5 \cdot t)$ e) $\frac{4}{3}$, $\frac{3 \cdot \sqrt{2}}{2} \cdot \cos(t - 45 \cdot deg)$, $-4 \cdot \cos(5 \cdot t)$ 3. a) $k < \frac{1}{2}$, $\frac{2}{3} < k < 2$ b) Gain may be increased by $\simeq 2dB$ and reduced by $\simeq 5dB$. $PM = 10^{\circ}$ to 15° c) Open loop: -4 Closed loop: 4 4. b) $(-0.7071 - 0.7071 \cdot j) \cdot \omega_c$ & $(-0.7071 + 0.7071 \cdot j) \cdot \omega_c$, $-\omega_c$ & $-\omega_c$, $-0.436 \cdot \omega_c$ & $-2.292 \cdot \omega_c$

Exam 3 Study Guide Thur, 4/6/06

1. Root Locus

Concepts of what a root locus plot is and what it tells you. Movement of poles

Good vs bad, fast response vs slow, OK damping vs bad.

Effects of adding a compensator

Conclusions, see section 4.4.5, p.82

2. Phase-locked loops

How does it work

The loop block diagram

Material from labs

3. Bode Plots

Be able to draw both magnitude and phase plots

I may ask you to start with a circuit

Basic rules

Complex poles an zeros

$$s^2 + 2 \cdot \zeta \cdot \omega_n + \omega_n^2$$

$$(s+a)^{2}+b^{2} = s^{2}+2\cdot a\cdot s+a^{2}+b^{2}$$

max at $\omega_n = \frac{1}{2 \cdot \zeta}$

Bode to transfer function (like problem 5.2b)

GM & PM

4. Nyquist plots

You won't be asked to draw one

Concepts of what a Nyquist plot is and what it tells you. Z = N + P Make sure you understand problem 5.11

GM & PM

- 5. Phase-lead compensator
- 6. HW 11 15
- 7. Labs 6 8