A. Stolp

ECE 3510 Tentative

01/15/21

1 Enduve 01/15/21									
Spring 2021 COU				Spring 2021 COURSE SCHEDULE	Bo	oks			
Wee	ek	Date	lect	Topics	Bodson	Nise			
1	Μ	01/18		Martin Luther King Day					
	W	01/20	1	Introduction to Feedback Systems, Block diagrams	1.1	1.1 - 6			
	F	01/22	2	Transfer functions and signals, The Laplace transform of signals	2.1	2.1			
2	Μ	01/25	3	The Laplace transform, Relationship between pole locations and signal shapes	2.1	2.2			
	W	01/27	4	Inverse of Laplace transforms using partial fraction expansions	2.2 - 3	2.2			
	F	01/29	5	Martin Luther King Day					
3	Μ	02/01	6	Transfer functions, Interconnected systems, Feedback system					
	W	02/03	7	Systems, Circuits, BIBO stability	3.2	2.4			
	F	02/05	8	Responses to step inputs, % overshoot, effect of zeros	3.3	4.1 - 4.5			
4	Μ	02/08	9	Responses to sinusoidal inputs, sinusoidal steady-state	3.4	4.6 - 8			
	W	02/10	10	Effect of initial conditions, State-space advantages	3.5 - 6	3.5			
	F	02/12	11	Electrical analogies of mechanical systems	notes	3.1 - 3			
5	Μ	02/15		Presidents Day					
	W	02/17	12	Electrical analogies of mechanical systems					
	F	02/19	13	Stability and Performance of Control Systems	4.1	6.1			
	Μ	02/22		Exam 1					
	W	02/24	14	Control system characteristics	4.1	7.1			
	F	02/26	15	Steady-state error and integral control	4.2	7.2 - 5			
7	Μ	03/01	16	Routh-Hurwitz stability test	4.3	6.2 - 5			
	W	03/03	17	Root-locus introduction, main rules RL1	4.4	8.1 - 5			
	F	03/05	18	Root-locus main rules, examples fill in from screen	4.4	8.5 - 7			
8	Μ	03/08	19	Root-locus additional rules, examples fill in from screen	4.4	9.1 - 3			
	W	03/10	20	Root-locus design, PI, Lag, PD, Lead	4.4	9.4 - 5			
	F	03/12	21	PID, Lag - lead, Catchup and Review					
_	. -	• • • • =							
9	Μ	03/15	22	Feedback design for phase-locked loops, discussion of PLL lab					

W 03/17	Exam 2	
F 03/19 23	Variations of Root Locus	notes

ECE 3510 Spring 2021 Course Schedule p2

					Books	
					Bodson	Nise
10	M 03	3/22	24	Pole dominance, Physical realization,	notes	9.6
	W 03	3/24	25	PID tuning	notes	
	F 03	3/26	26	Ladder Logic & Programmable Logic Controllers (PLCs)	notes	
11	M 03	3/29	27	Ladder Logic & Programmable Logic Controllers (PLCs)	notes	
	W 03	3/31	28	Frequency-Domain Analysis of Control Systems, Bode plots	5.1	10.1 - 2
	F 04	4/02	29	Bode Plots complex poles & zeros, ζ, ω _n	5.1	10.2
12	M 04	4/05	30	Bode Plots to Transfer functions	5.1	10.13
	W 04	4/07	31	Bode Plots to Transfer functions, Gain and phase margins	5.1, 3	10.7
	F 04	4/09	32	Nyquist Criterion of stability, introduction		
13	M 04	4/12		Exam 3		
	W 04	4/14	33	Nyquist Criterion of Stability, poles on the j ω axis	5.2	10.5
	F 04	4/16	34	Gain, phase and delay margins	5.3	10.6-7, 12
		4/40	05	Deletion to transient recommend. From the Demoin Design	5.0	40.0.44
14		4/19	35	Relation to transient response, Frequency-Domain Design	5.3	10.8, 11
	VV 04	4/21	36	Discrete-time Signals and Systems	6.1	13.1 - 2
	F 04	4/23	37	The z-transform	6.1	13.3
15		1/26	20	Proportion of the z transform	6.2	12.2
15		4/20	30	Problem Session 10:45	0.2	13.5
	VV U2	4/ZŎ				
	T 05	5/04		Review 3:30		
	W 05	5/05		Final Exam, 10:30 -12:30		