| Week | Month | Mon | Tue | Wed | Thur | Fri | |------|-------|---|------------------------------|--|--------------------------------------|--| | 1 | Jan | 8 L1 Syllabus, etc. Servo,
Introduction to Feedback
Systems, Block diagrams | 9 | 10 L2 Transfer functions and signals, The Laplace transform of signals | 11 | 12 L3 The Laplace transform,
Relationship between pole locations
and signal shapes | | 2 | | 15 Martin Luther King Day | 16 | 17 L4 Inverse of Laplace transforms using partial fraction expansions | 18 | 19 L5 Inverse Laplace,
Properties of signals
(bounded, converge) | | 3 | | 22 L6 Transfer functions,
Interconnected systems,
Feedback system | 23 | 24 L7 Systems, Circuits,
BIBO stability | 25 | 26 L8 Responses to impulse and step inputs, 1st & 2nd order | | 4 | | 29 L9 Responses to step inputs, % overshoot, effect of zeros | 30 | 31 L10 Responses to sinusoidal inputs, sinusoidal steady-state | 1 | 2 L11 Effect of initial conditions, State-space advantages | | 5 | Feb | 5 L12 Electrical analogies of mechanical systems | 6 | 7 Exam 1 | 8 | 9 L13 Electrical analogies of mechanical systems | | 6 | | 12 L14 Stability and
Performance of Control
Systems | 13 | 14 L15 Steady-state error and integral control | 15 | 16 L16 Routh-Hurwitz stability test | | 7 | | 19 Presidents Day | 20 | 21 L17 Root-locus introduction, main rules, RL1 | 22 | 23 L18 Root-locus main rules, examples | | 8 | | 26 L19 Root-locus additional rules, examples | 27 | 28 L20 Root-locus additional rules, examples | 29 | 1 L21 Root-locus design,
PI, Lag, PD, Lead,
Example 1 | | | Mar | 4 Spring Break | 5 | 6 | 7 | 8 | | 9 | | 11 L22 Root-locus design,
PID, Lag - lead, Catchup
and Review | 12 | 13 Exam 2 | 14 | 15 L23 Feedback design for phase-locked loops, discussion of PLL lab | | 10 | | 18 L24 Variations of Root
Locus | 19 | 20 L25 Pole dominance,
Physical realization, | 21 | 22 L26 PID tuning and
Relay logic | | 11 | | 25 L27 Ladder Logic & Programmable Logic Controllers (PLCs) | 26 | 27 L28 Frequency-Domain,
Bode plots, basic examples | 28 | 29 L29 Bode Plots complex poles & zeros, damping fact., nat. freq. | | 12 | April | 1 L30 Bode Plots to
Transfer functions | 2 | 3 Exam 3 | 4 | 5 L31 Bode Plots to
Transfer functions, Gain
and phase margins | | 13 | | 8 L32 Relation to transient
response, Frequency-Domain
Design, Zin, Zout | 9 | 10 L33 Amplifier Feedback & freq response, Op Amp compensation | 11 | 12 L34 Discrete-time
Signals and Systems | | 14 | | 15 L35 The z-transform and properties | 16 | 17 L36 Properties of the z-transform | 18 ME
Design Day,
Union Build. | 19 L37 Inverse z-transform | | 15 | | 22 L38 Digital control | 23 Last
Day of
Classes | 24 Reading Day | 25 | 26 Finals | | 16 | May | 29 3510 Final 10:30 AM | 30 | 1 | 2 Freedom | 3 |