Steps to make Bode Plots
Sample transfer function: $\quad \mathrm{P}(\mathrm{s})=\mathrm{K} \cdot \frac{\left(\mathrm{s}+\mathrm{z}_{1}\right) \cdot\left(\mathrm{s}+\mathrm{z}_{2}\right) \cdot\left(\mathrm{s}+\mathrm{z}_{3}\right)}{\mathrm{s}^{2} \cdot\left(\mathrm{~s}+\mathrm{p}_{1}\right) \cdot\left(\mathrm{s}+\mathrm{p}_{2}\right) \cdot\left(\mathrm{s}^{2}+2 \cdot \zeta \cdot \omega_{\mathrm{n}}+\omega_{\mathrm{n}}{ }^{2}\right)}$ if complex pole is expressed: $\left[(s+a)^{2}+b^{2}\right]$ then: $\omega_{n}=\sqrt{a^{2}+b^{2}}$

1. a) Rewrite, replacing all s's with blanks:

$$
P\left(\AA_{)}\right)=K \cdot \frac{\left(-+z_{1}\right) \cdot\left(-+z_{2}\right) \cdot\left(-+z_{3}\right)}{-L^{2} \cdot\left(-+\mathrm{p}_{1}\right) \cdot\left(-+\mathrm{p}_{2}\right) \cdot\left(-+\omega_{\mathrm{n}}\right) \cdot\left(-+\omega_{\mathrm{n}}\right)} \begin{aligned}
& \text { notice that you also simplify the } \\
& \text { complex poles and/or zeros for now }
\end{aligned}
$$

2. a) Scale your frequency axis to start at some frequency less than your smallest pole or zero.
b) Plug this starting frequency in for any poles or zeros at the origin (write it in the blank as $j \omega$).

$$
P\left(j \omega,_{-}\right)=K \cdot \frac{\left(-+z_{1}\right) \cdot\left(-+z_{2}\right) \cdot\left(-+z_{3}\right)}{\left(j \cdot \omega_{\text {start }}\right)^{2} \cdot\left(-+\mathrm{p}_{1}\right) \cdot\left(-+\mathrm{p}_{2}\right) \cdot\left(-+\omega_{\mathrm{n}}\right) \cdot\left(-+\omega_{\mathrm{n}}\right)}
$$

c) Ignore all the other blanks and calculate your initial magnitude, initial slope and the initial phase angle.

$$
\text { Initial magnitude }=K \cdot \frac{\left(\mathrm{z}_{1}\right) \cdot\left(\mathrm{z}_{2}\right) \cdot\left(\mathrm{z}_{3}\right)}{\left(\mathrm{j} \cdot \omega_{\text {start }}\right)^{2} \cdot\left(\mathrm{p}_{1}\right) \cdot\left(\mathrm{p}_{2}\right) \cdot\left(\omega_{\mathrm{n}}\right) \cdot\left(\omega_{\mathrm{n}}\right)}
$$

Initial slope
ω 's in the numerator $-->+20 \mathrm{~dB} /$ decade each
ω 's in the denominator --> - 20dB/decade each

Initial phase
numerator, $\mathrm{j}=>90^{\circ}$, $-=>+180^{\circ}$
denominator, $\mathrm{j}=>-90^{\circ}$, $=>-180^{\circ}$
3. a) Extend the line to the first pole or zero.
b) Replace that pole or zero with $\mathrm{j} \omega$ and cross out the value of the pole or zero:

$$
K \cdot \frac{\left(j \omega+z_{1}^{\prime}\right) \cdot\left(-+z_{2}\right) \cdot\left(-+z_{3}\right)}{(j \omega)^{2} \cdot\left(-+p_{1}\right) \cdot\left(-+p_{2}\right) \cdot\left(-+\omega_{n}\right) \cdot\left(-+\omega_{n}\right)}
$$

$$
\text { OR } \quad K \cdot \frac{\left(-+z_{1}\right) \cdot\left(-+z_{2}\right) \cdot\left(-+z_{3}\right)}{2}
$$

$$
(\mathrm{j} \omega)^{2} \cdot\left(\mathrm{j} \omega+\mathrm{X}_{1}\right) \cdot\left(-+\mathrm{p}_{2}\right) \cdot\left(-+\omega_{\mathrm{n}}\right) \cdot\left(-+\omega_{\mathrm{n}}\right)
$$

c) Use this to find the new slope and phase angle.

Unless you replaced what was once a -s or crossed out a negative value:

zeros turn up the slope $-->+20 \mathrm{~dB} /$ decade	zeros increase the phase angle $-->+90 \mathrm{deg}$
poles turn down the slope $-->-20 \mathrm{~dB} /$ decade	poles decrease the phase angle --> -90 deg

4. Repeat step 3 for each successive pole or zero.

After the last one you may want to check the magnitude or slope and phase again.
5. Draw a smooth line through the bode plots to estimate the actual magnitude and phase.
a) At poles and zeroes that are NOT complex

Actual magnitude: -3 dB at single poles $\quad-6 \mathrm{~dB}$ at double poles +3 dB at single zeros $\quad+6 \mathrm{~dB}$ at double zeros
etc..

Magnitude effects extend about 1 decade fore and aft.
5. b) At poles and zeroes that ARE complex

Correct the smooth line at the complex poles by scaling the plots on this page.
You may have to use a mirror image of these plots

The damping factor comes from the complex pole expression in one of two ways:

$$
\left(\mathrm{s}^{2}+2 \cdot \zeta \cdot \omega_{\mathrm{n}} \cdot \mathrm{~s}+\omega_{\mathrm{n}}^{2}\right)
$$

natural
frequency $\omega_{n}=\sqrt{\omega_{n}{ }^{2}}$

$$
\begin{aligned}
& \text { damping } \\
& \text { factor: }
\end{aligned} \zeta=\frac{2 \cdot \zeta \cdot \omega_{\mathrm{n}}}{2 \cdot \omega_{\mathrm{n}}}
$$

if complex pole is expressed:

$$
\left[(s+a)^{2}+b^{2}\right]
$$

natural
frequency $\omega_{n}=\sqrt{a^{2}+b^{2}}$

$$
\underset{\text { factor }}{\text { damping }} \quad \zeta=\frac{\mathrm{a}}{\omega_{\mathrm{n}}}
$$

At ω_{n} the actual magnitude is:

$$
\frac{1}{2 \cdot \zeta} \quad \text { in } \mathrm{dB} \quad 20 \cdot \log \left(\frac{1}{2 \cdot \zeta}\right)
$$

To correct the plot at complex zeros, use these plots upside-down

ECE 3510
Bode Plot Examples
Ex. $1 \quad P(s)=\frac{2 \cdot(s+10)}{s+100}$

Ex. $2 P(s)=\frac{s+20}{4 \cdot(s+1)^{2}}$
A. Stolp
3/27/14,
$4 / 4 / 17$ (E3)
$|P(j \omega)|$
$d B$

ECE 3510	Bode Examples
Ex. 3 P (s) : 20000.(-s+0.1)	
clear the - $\quad(s+4) \cdot(s+1000)$	
clear the -	-20000 $(\mathrm{s}-0.1)$
the s	$(s+4) \cdot(s+1000)$
$\omega<0.1$	
$1800^{\circ}+1800 \times 360^{\circ}$	
-20000.(- 0.1$)=0.5 \quad-6 \cdot \mathrm{~dB}$
(+4) $($	+ 1000) $\quad 136$

Ex. $4 \quad \mathrm{P}_{4}(\mathrm{~s}):=\frac{0.5 \cdot(\mathrm{~s}+1) \cdot(\mathrm{s}-20)}{\mathrm{s} \cdot(\mathrm{s}+100)}$
$|\mathrm{P}(\mathrm{j} \omega)|$
dB

ECE 3510

Ex. 5
$\mathrm{P}_{5}(\mathrm{~s}):=\frac{5000 \cdot \mathrm{~s} \cdot(\mathrm{~s}-4)}{(\mathrm{s}+0.2) \cdot(\mathrm{s}+20) \cdot(\mathrm{s}+1000)}$
$P(j \omega)$
$d B$

ECE 3510 Bode Examples
 Ex. 7

$\mathrm{P}_{7}(\mathrm{~s}):=\frac{400 \cdot(\mathrm{~s}+0.1) \cdot(\mathrm{s}+100)}{\left[(\mathrm{s}+0.4)^{2}+15.84\right] \cdot(\mathrm{s}+1000)}$
natural $\quad(s+a)^{2}+b^{2}$
freq.
$\omega_{\mathrm{n}}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=$
damping
factor: $\zeta=\frac{\mathrm{a}}{\omega_{\mathrm{n}}}=$
peak $\frac{1}{2 \cdot \zeta}=$

Ex. 8

$$
(s+a)^{2}+b^{2}
$$

$\mathrm{P}_{8}(\mathrm{~s}):=\frac{25 \cdot\left[(\mathrm{~s}+10)^{2}+9900\right]}{\left(\mathrm{s}^{2}+\mathrm{s}+4\right) \cdot(\mathrm{s}+2000)}$

$$
\mathrm{s}^{2}+2 \cdot \zeta \cdot \omega_{\mathrm{n}} \cdot \mathrm{~s}+\omega_{\mathrm{n}}^{2}
$$

natural
frequency $\omega_{\mathrm{n} 1}=\sqrt{\omega_{\mathrm{n} 1}{ }^{2}}=$
$\begin{aligned} & \text { damping } \\ & \text { factor: } \\ & \text { natural }\end{aligned} \quad \zeta=\frac{2 \cdot \zeta \cdot \omega_{\mathrm{n} 1}}{2 \cdot \omega_{\mathrm{n} 1}}=$
natural
freq.
$\omega_{\mathrm{n} 2}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=$
damping
factor: $\zeta=\frac{\mathrm{a}}{\omega_{\mathrm{n}}}=$
peak $\frac{1}{2 \cdot \zeta}=$

ECE 3510
Ex. $1 \quad \mathrm{P}(\mathrm{s})=$?

Bode Plot to Transfer Function Examples

Ex. 2 What if the phase plot was:
$\mathbf{P}(\mathrm{s})=$?

Bode Plot to Transfer Function Examples p. 2

Ex. $3 \quad \mathbf{P}(\mathrm{~s})=$?

Ex. 4 What if the phase plot was:
$\mathbf{P}(\mathrm{s})=$?

Ex. $5 \quad P(s)=$?

Ex. 6 What if the phase plot was:
$\mathbf{P}(\mathrm{s})=$?

Note: A somewhat more involved method is outlined in Nise section 10.13 (p. 660 in 3rd ed., 665 in 4th). That method involves estimating only one pole or zero at a time and then subtracting the effect from original to more clearly see the others. This can work much better with real experimental data. Real data always has delay effects and other non-linearities which make the process much harder.

Gain Margin

Phase Margin

Delay Margin

Gain Margin

Phase Margin

Delay Margin

Double Integrator

A very common system and a difficult design problem.

$$
\text { It's Newton's fault: } \quad \mathrm{F}=\mathrm{m} \cdot \mathrm{a}=\mathrm{m} \cdot \frac{\mathrm{~d}^{2}}{\mathrm{dt}^{2}} \mathrm{x} \quad \mathrm{x}=\frac{1}{\mathrm{~m}} \cdot\left(\iint \mathrm{Fdt} \mathrm{dt}\right)
$$

$$
\text { Same for angular motion: } \quad T=\mathrm{J} \cdot \alpha=\mathrm{J} \cdot \frac{\mathrm{~d}^{2}}{\mathrm{dt}} \theta
$$

$$
\begin{aligned}
\mathbf{X}(\mathrm{s})= & \mathbf{F}(\mathrm{s}) \cdot \frac{1}{\mathrm{~m} \cdot \mathrm{~s}^{2}} \\
& \& \quad \mathbf{P}(\mathrm{~s})=\frac{1}{\mathrm{~m} \cdot \mathrm{~s}^{2}}
\end{aligned}
$$

This problem arises anytime force is the input and position is the output.
Force is the ONLY way to get the motion of any object to change, so yes, this is a common problem.
In the Inverted Pendulum lab, the movement of the base was simplified to a first-order system to avoid the difficulties that come from this very issue.

The example used in section 5.3 .9 is a VERY REAL example.

If the angle is always 180 , then wouldn't positive feedback work? (make the gain negative)

Just makes the RL worse.

Lead controller

See section 5.3.9

$$
\mathbf{C}(\mathrm{s})=\mathrm{k}_{\mathrm{c}} \cdot \frac{\mathrm{~s}+\mathrm{b}}{\mathrm{~s}+\mathrm{a}}
$$

Put the two together,

$$
\mathbf{G}(\mathrm{s})=\mathrm{k}_{\mathrm{c}} \cdot \frac{\mathrm{~s}+\mathrm{b} \cdot \mathrm{k} \cdot \frac{k_{p}}{\mathrm{~s}+\mathrm{a}} \mathrm{~s}^{2}}{}=\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot \frac{\mathrm{~s}+\mathrm{b}}{\mathrm{~s}^{2} \cdot(\mathrm{~s}+\mathrm{a})}
$$

Bode plots (numbers are representative)
|C(s)|
dB

The Bottom Line

I've combined information from the table on page 155 with table on page 152.

2. Use eq. 5.69 to relate ω_{c} to k_{p} and k_{c}.

$$
\frac{\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}}}{\omega_{\mathrm{c}}^{2}} \cdot \sqrt{\frac{\mathrm{~b}}{\mathrm{a}}}=1 \quad \text { OR, rearranged: } \quad \omega_{\mathrm{p}}=\omega_{\mathrm{c}}=\sqrt{\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}} \cdot \sqrt{\frac{\mathrm{~b}}{\mathrm{a}}}}
$$

Depending on your knowns and unknowns, other rearrangements may be useful: Note: $\frac{b}{a}=\frac{1}{\left(\frac{a}{b}\right)}$

$$
\mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{c}}=\omega_{\mathrm{c}}^{2} \cdot \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}} \quad \mathrm{k}_{\mathrm{p}}=\frac{\omega_{\mathrm{c}}^{2}}{\mathrm{k}_{\mathrm{c}}} \cdot \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}} \quad \mathrm{k}_{\mathrm{c}}=\frac{\omega_{\mathrm{c}}^{2}}{\mathrm{k}_{\mathrm{p}}} \cdot \sqrt{\frac{\mathrm{a}}{\mathrm{~b}}}
$$

To get answers and plots for BD5, prob.3, I arbitrarily used:

$$
\omega_{\mathrm{c}}:=10 \quad \mathrm{k}_{\mathrm{p}}:=1 \quad \text { and found } \mathrm{k}_{\mathrm{c}} \text { from the eq. }
$$

3. Find: $\quad \mathrm{a}=\omega_{c} \cdot \sqrt{\frac{a}{b}}=\omega_{\mathrm{p}} \cdot \sqrt{\frac{\mathrm{a}}{\mathrm{b}}} \quad \mathrm{b}=\omega_{c} \cdot \sqrt{\frac{\mathrm{~b}}{\mathrm{a}}}=\omega_{\mathrm{p}} \cdot \sqrt{\frac{b}{\mathrm{a}}}$
the pole location of $\mathbf{C}(\mathrm{s}) \quad$ the zero location of $\mathbf{C}(\mathrm{s})$

Why Bode Plots?

1. Provides a method to find the approximate transfer function as used in the Flexible Beam lab.
2. Terms GM and PM are in wide use and you need to know what they mean.
3. Sometimes used for design method as in the Flexible Beam lab.

You will find from BD5, prob.3, that the approximations of overshoot given in the table above are not very good (off by about a factor of 2), but, those predicted by the second-order approximation are even worse (b/c of zero close to origin).

Name: \qquad

1. Sketch the Bode plots for the following transfer functions.

Label the graphs, give the slopes of the lines in the magnitude plot and draw the "smooth" lines.
a) $\mathrm{P}(\mathrm{s})=\frac{\mathrm{s}+10}{(\mathrm{~s}+1) \cdot(\mathrm{s}+100)}$

/ P(s)
(deg)

b) $P(s)=\frac{s-0.4}{s \cdot(s+400)}$

c) $\mathrm{P}(\mathrm{s})=\frac{800 \cdot(\mathrm{~s}-10) \cdot(\mathrm{s}+10)}{(\mathrm{s}+0.1) \cdot(\mathrm{s}+400)^{2}} \quad$ plot on next page

d) $P(s)=\frac{900}{(s+30)^{2} \cdot(s+1)}$

1. Sketch the Bode plots for the following transfer functions. Label the graphs, give the slopes of the lines in the magnitude plot and draw the "smooth" lines.
a) $\mathrm{P}(\mathrm{s})=\frac{\mathrm{s}+50}{\mathrm{~s}^{2}+0.4 \cdot \mathrm{~s}+4}$

b) $\mathrm{P}(\mathrm{s})=\frac{\mathrm{s}^{2}+2 \cdot \mathrm{~s}+100}{\mathrm{~s}^{2}}$ plot on next page

c) $\mathrm{P}_{2}(\mathrm{~s}):=\frac{(\mathrm{s}+4) \cdot(\mathrm{s}+2000)}{\mathrm{s}^{2}+2 \cdot \mathrm{~s}+1600}$ plot below

You must show the work needed to get the answers below. Add your own paper if necessary.

1. (a \& c are from Problem 5.2 in Bodson text.)
a) The magnitude Bode plot of a system is shown below. What are the possible transfer functions of stable systems having this Bode plot?

b) A Bode plot is shown below, estimate of the transfer function of the system. Assume no negative signs in the transfer function (all poles and zeros in LHP). Show your work (how you made your estimate).

ECE 3510 Homework BP2
c) The Bode plots of a system are shown. Give an estimate of the transfer function of the system. Show your work (how you made your estimate).

ECE 3510 Homework Bd3

p. 3
2. The system whose Bode plots are given at right is stable in closed-loop. Find its gain margin, phase margin, and delay margin. Show your work on the drawings.

3. Problem 5.3 in the text.
a) The system whose Bode plots are given at left is stable in closed-loop. Find its gain, phase, and delay margins. Show your work on the drawings.

b) Describe the behavior of the closed-loop system of part (a) if the open-loop gain is increased to a value close to the maximum value given by the gain margin. In particular, what can you say about the locations of the poles of the closed-loop system?
c) Consider an open-loop stable system which is such that the magnitude of its frequency response, including the gain factor k , is less than 1 for all $\omega(|\mathrm{kG}(\mathrm{s})|<1)$. Can you determine whether the closed-loop system is stable with only that information? If yes, show how.
b) Bode plots of the open-loop transfer function of a feedback system are shown below, with the detail from 1 to 10 $\mathrm{rad} / \mathrm{sec}$ shown on the left. For this system:

- How much can the open-loop gain be changed (increased and/or decreased) before the closed-loop system becomes unstable?
- What is a rough estimate of the phase margin of the feedback system? Show on the graph how the results are obtained. The numerical results do not have to be precise.
- How much time delay can there be in feedback system before the phase margin disappears.

c) For the system of part (a), give the steady-state response of the open-loop system an input $x(t)=4 \cos (10 t)$. express the answer in the time-domain.
d) Give the steady-state response of the closed-loop system for the same input.

Hint: closed loop output is: input $\frac{G(10 \cdot j)}{1+G(10 \cdot j)}$

ECE 3510 Homework BP2
 p. 6

5. Like problem 5.9a (p.147) in the Bodson text.
a) Give the gain margin, the phase margin and the delay margin of the system whose Bode plots are shown at right (the plots are for the open-loop transfer function and the closed-loop transfer function is assumed to be stable).

Answers

1.a) $\mathrm{P}(\mathrm{s})=10 \cdot \frac{\mathrm{~s}+1}{\mathrm{~s}+10}$
$10 \cdot \frac{\mathrm{~s}-1}{\mathrm{~s}+10}$
$-10 \cdot \frac{s+1}{s+10}$
$-10 \cdot \frac{s-1}{s+10}$
The rest are NOT stable
b) $\mathrm{P}(\mathrm{s})=\frac{10 \cdot \mathrm{~s} \cdot(\mathrm{~s}+2)}{\left(\mathrm{s}^{2}+10 \cdot \mathrm{~s}+10000\right)}$
2.
3. a
a) $\mathrm{GM} \simeq 21 \cdot \mathrm{~dB}$
$\mathrm{PM} \simeq 120 \cdot \mathrm{deg}$
c) $\mathrm{P}(\mathrm{s})=\frac{10 \cdot(\mathrm{~s}+0.1) \cdot\left(\mathrm{s}^{2}+0.4 \cdot \mathrm{~s}+4\right)}{\mathrm{s} \cdot\left(\mathrm{s}^{2}+0.2 \cdot \mathrm{~s}+1\right) \cdot\left(\mathrm{s}^{2}+2 \cdot \mathrm{~s}+400\right)}$
b) The system will have a transient ring at about $10 \mathrm{rad} / \mathrm{sec}$.

Two poles of the closed loop system will be close to $\pm 10 \mathrm{j}$.
DM : $=600 \cdot \mathrm{~ms}$
4. b) Gain may be increased by $\simeq 2 \mathrm{~dB}$ and reduced by $\simeq 4.4 \mathrm{~dB} . \quad \mathrm{PM} \simeq 13 \cdot \mathrm{deg} \quad \mathrm{DM} \simeq 36 \cdot \mathrm{~ms}$
c) $2 \cdot \cos (10 \cdot t+158 \cdot \mathrm{deg})$
d) $3.5 \cdot \cos (10 \cdot t+140 \cdot \mathrm{deg})$
5. a) $\mathrm{GM} \simeq 30 \cdot \mathrm{~dB} \quad \mathrm{PM} \simeq 40 \cdot \mathrm{deg} \quad \mathrm{DM} \simeq 50 \cdot \mathrm{~ms}$

ECE 3510 Homework BP2
p. 6

1. Problem 5.13 b \& new c \& d in the text.
b) Bode plots of the open-loop transfer function of a feedback system are shown below, with the detail from 1 to 10 $\mathrm{rad} / \mathrm{sec}$ shown on the left. For this system:

- How much can the open-loop gain be changed (increased and/or decreased) before the closed-loop system becomes unstable ?
- What is a rough estimate of the phase margin of the feedback system? Show on the graph how the results are obtained. The numerical results do not have to be precise.
- How much time delay can there be in feedback system before the phase margin disappears.

c) For the system of part (a), give the steady-state response of the open-loop system an input $x(t)=4 \cos (10 t)$. express the answer in the time-domain.
d) Give the steady-state response of the closed-loop system for the same input. Hint: closed
loop output is: \quad input $\cdot \frac{G(10 \cdot j)}{1+G(10 \cdot j)}$

ECE 3510 Homework BP3

2. Like problem 5.9a in the Bodson text.
a) Give the gain margin, the phase margin and the delay margin of the system whose Bode plots are shown at right (the plots are for the open-loop transfer function and the closed-loop transfer function is assumed to be stable).

Add another sheet of paper the following:
3. A system has a delay of $\mathrm{D}:=0.01 \cdot \mathrm{sec}$ How many degrees of phase does this represent at:
a) $\mathrm{f}:=1 \cdot \mathrm{~Hz}$
$\mathrm{f}:=10 \cdot \mathrm{~Hz}$
$\mathrm{f}:=100 \cdot \mathrm{~Hz}$
$\mathrm{f}:=1 \cdot \mathrm{kHz}$
b) $\omega:=1 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
$\omega:=10 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
$\omega:=100 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
$\omega:=1000 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
4. a) If the phase response of a pure time delay were plotted on linear phase vs. linear frequency plot, what would be the shape of the curve?
b) If the phase response of a pure time delay were plotted on linear phase vs. logarithmic frequency plot, what would be the shape of the curve?
5. Ch. 10, prob. 30 in Nise, 3rd Ed., page 677. Similar to example 10.17 on page 658 (in section 10.12)

Ch. 10, prob. 30 in Nise, 4th Ed., page 682. Similar to example 10.17 on page 663 (in section 10.12)
Ch. 10, prob. 30 in Nise, 5th Ed., page __. Similar to example 10.17 on page \quad _(in section 10.12)
Ch. 10, prob. 30 in Nise, 6th Ed., page $\overline{614}$. Similar to example 10.17 on page $\overline{600}$ (in section 10.12)
Given a unity feedback system with a forward-path transfer function $\quad G(s)=\frac{K}{s \cdot(s+3) \cdot(s+12)}$ and a delay of 0.5 second, make a second-order approximation and estimate the percent overshoot if $\mathrm{K}:=40$ Use Bode Plots and frequency response techniques or you may calculate where $\quad|G(j \omega)|=1$ to find ω and then the the phase margin. You may also use Matlab.
You may use the estimate from equation in Bodson text: $\zeta \simeq \frac{\mathrm{PM}}{100 \cdot \mathrm{deg}} \quad \begin{gathered}\text { (PM in degrees and may } \\ \text { include delay effects) }\end{gathered}$

6. In section 5.3.9 of Bodson's book, he discusses using a lead controller to stabilize a system (plant) represented by a double integrator. Give one or more examples of real systems that are essentially double integrators.
7. Problem 5.14 in the text.
a) Consider the lead controller for the double integrator. For the design that makes the crossover frequency equal to ω_{C}, obtain the polynomial that specifies the closed-loop poles (as a function of a / b and ω_{C}). Show that one closed-loop pole is at $s=-\omega_{\mathrm{C}}$ no matter what a / b is.
Hints: Find: $\quad G(s)=P(s) \cdot C(s)$
Find the denominator of the closed-loop transfer function: $\quad D_{G}+N_{G}$
Substitute in a, b, and k_{c} like eq. 5.71 in book.
Use polynomial division to show that $\quad \mathrm{D}_{\mathrm{G}}+\mathrm{N}_{\mathrm{G}}$ can be divided by $\left(\mathrm{s}+\omega_{\mathrm{c}}\right)$ with no remainder.
b) Compute the other closed-loop poles, as functions of ω_{C}, when $\mathrm{a} / \mathrm{b}=5.83,9$, and 13.9.

Hint: The "other" roots are the roots of the quotient.
c) Use Matlab SISO or other software of your choice to confirm the results of part c) and the \% overshoot figures expected from the phase margins. ($20 . \% \quad 14 . \% \quad 9.5 \%$)

Answers

1. b) Gain may be increased by $\simeq 2 \mathrm{~dB}$ and reduced by $\simeq 4.4 \mathrm{~dB} . \quad \mathrm{PM} \simeq 13 \cdot \mathrm{deg} \quad \mathrm{DM} \simeq 36 \cdot \mathrm{~ms}$
c) $2 \cdot \cos (10 \cdot t+158 \cdot \mathrm{deg})$
d) $3.5 \cdot \cos (10 \cdot \mathrm{t}+140 \cdot \mathrm{deg})$
2. a) $\mathrm{GM} \simeq 30 \cdot \mathrm{~dB} \quad \mathrm{PM} \simeq 40 \cdot \mathrm{deg} \quad \mathrm{DM} \simeq 50 \cdot \mathrm{~ms}$
3. a) $3.6 \cdot \operatorname{deg} \quad 36 \cdot \mathrm{deg} \quad 360 \cdot \mathrm{deg} \quad 3600 \cdot \mathrm{deg} \quad$ b) $0.573 \cdot \mathrm{deg} \quad 5.73 \cdot \mathrm{deg} \quad 57.3 \cdot \mathrm{deg} \quad 573 \cdot \mathrm{deg}$
4. a) A straight line of negative slope, $\omega \mathrm{D}$, where D is the time delay.
b) A negative sloping line with a slope of $\omega \mathrm{D}$. Since the frequency increases by a factor of 10 each decade, so would the downward slope of the line.
5. Calculated OdB freq: $\omega:=1.045$ expect about 30% overshoot
6. Any system with mass where a force is the input and position is the "output". $F=m \cdot a=m \cdot \frac{d^{2}}{d t^{2}} x$
7. b) $\mathrm{a} / \mathrm{b}=5.83: \quad(-0.7071-0.7071 \cdot \mathrm{j}) \cdot \omega_{\mathrm{c}} \quad \& \quad(-0.7071+0.7071 \cdot \mathrm{j}) \cdot \omega_{\mathrm{c}}$
$\mathrm{a} / \mathrm{b}=9: \quad-\omega_{\mathrm{c}} \quad \& \quad-\omega_{\mathrm{c}} \quad$ (making 3 all at ω_{c})
$\mathrm{a} / \mathrm{b}=13.9: \quad-0.436 \cdot \omega_{\mathrm{c}} \quad \& \quad-2.292 \cdot \omega_{\mathrm{c}}$
c) Poles are confirmed with $\quad \omega_{\mathrm{c}}:=10 \quad \mathrm{k}_{\mathrm{p}}:=1 \quad$ gain $=1$

Overshoots are about double expected values $35 . \% \quad 27 \% \quad 21 . \% \quad$ ECE 3510 Homework BP3

