
ECE 3510    Phase-Locked Loops a

Phase-Locked Loops are a bit of a distraction right here, but we need to cover them for next lab.  (6 & 7)

Need parts and breadboard for this lab. PLL IC is expensive and prone to static & handling damage.

See lab 6 handout PAY ATTENTION to warnings in the lab.

Modulation

AM = Amplitude Modulation v(t)

multiplier
x mod( )t

x mod( )t AM signal out t

includes a 
DC offset

cos .ω c t

"carrier", ωc is the "carrier frequency" Simple

Demodulation
A simple rectifier circuit Returns the modulation signal

v(t)

t

And a coupling capacitor can remove the DC
detector

v(t)
FM = Frequency Modulation

x mod( )t

x mod( )t VCO FM signal out t

Voltage-Controlled Oscillator

ωc is the carrier frequency and is the output when x mod = 0

ω c
.k vco x mod( )t is the output frequency

So if: cos .ω c t is the carrier, I guess cos .ω c
.k vco x mod( )t t must be the output...  WRONG!

actually: cos( )θ( )t

where: θ( )t = dtω is the REAL relationship between θ and ω 

= .ω t for the unmodulated (steady-state sinusoid) case

so if you want to modulate the frequency:

θ( )t = dtω c
.k vco x mod( )t = .ω c t dt.k vco x mod( )t

And, the VCO becomes
k vco

s
if you just care about θ( )t and not the carrier

PM = Phase Modulation Phase-Locked Loops  p1



One way to demodulate FM is with a Phase-Locked-Loop. Phase-Locked Loops  p2

x mod( )t modulation

Signal out
Signal in φ( )t

Phase detector Filter Voltage-Controlled 
      Oscillator

y vco( )t
y( )t

same frequency and 
phase as the input

To analyze the Phase-Locked-Loop (PLL).

Signal out
Signal in φ( )t

Phase detector Filter Voltage-Controlled 
      Oscillator

y vco( )t
y( )t

The same loop if you only care about what happens to θ( )t
Voltage-Controlled 
      OscillatorPhase detector Filter

Signal in Signal out

θ in( )t k pd θ in θ out C( )s θ out( )tk vco

s

G( )s = ..k pd
k vco

s
C( )s = .

k pll

s
C( )s where k pll = .k pd k vco

Closed-loop: H( )s =

.
k pll

s
C( )s

1 .
k pll

s
C( )s

=
.k pll C( )s

s .k pll C( )s

At first glance, that filter, C(s), doesn't look necessary, but many phase detectors don't put out a nice DC.

Our phase detector in the lab is a good example:

This DEFINITELY 
has to be filtered

For filter, C(s), design, see Bodson, section 4.5.4 and PLL labs.

Your challenge in the lab will be to get a good demodulation and a stable system.

PLLs can also be used for frequency synthesis and motor speed control, etc.. Phase-Locked Loops  p2



ECE 3510 Unconventional Root Locus A. Stolp 3/17/20

A regular root locus plot is very useful if you want to see how the positions of the closed-loop poles of a feedback system 
are affected by simple proportional gain in the system.  But... what if you want to see how these poles are affected by 
some other variable in the system, like the filter time-constant in the Phase-Locked-Loop lab?  Could we use some of the 
same concepts to see the affects of some other variable?  The answer is yes, we just have to hold the gain constant and 
rearrange things a bit.  An "unconventional root-locus plot" is like a regular root locus plot except that the gain is held 
constant and the plot shows how the closed-loop poles move as the result of changing some variable other than gain.

To create an unconventional root locus plot:
1. Determine the gain factor if it can be adjusted, and make it part of the open-loop transfer function, G(s).  

Hold it constant at some number.

2. Determine the denominator of the closed-loop transfer function, H(s).  Let's call it DH(s).

3. Rearrange DH(s) into this form: D'( )s .x N'( )s where x is the variable for which you want to draw the root locus.

Notice that x occupies exactly the same position  the gain would normally occupy.  Normal: D G( )s .k N G( )s

Note: If you cannot rearrange DH(s) into this form, then you cannot 
use this method to create an root locus plot for the variable x. 

Now: D'( )s .x N'( )s

4. Now simply draw a root locus as though D'(s) was the open-loop denominator and N'(s) was the open-loop numerator.

Ex.1 Sketch the unconventional root-locus plot for the open-loop transfer function below.  The 
root-locus should be plotted for an increasing a. The gain will be held constant at 3

G( )s =
( )s .2 a

.( )s 5 ( )s a

The denominator of the closed-loop transfer function:

.( )s 5 ( )s a .3 ( )s .2 a = s2 .s a .8 s .11 a

= s2 .8 s .s a .11 a = .s ( )s 8 .a ( )s 11

D'( )s = .s ( )s 8 N'( )s = ( )s 11

poles at 0 and 8 zero at 11

Ex.2 Sketch the unconventional root-locus plot for the open-loop transfer function below.  The 
root-locus should be plotted for an increasing g. 

G( )s =
..k s ( ).g s 1

.( )s .4 g ( )s 5
k = 2 and is constant

The denominator of 
the closed-loop 
transfer function:

.( )s .4 g ( )s 5 ..2 s ( ).g s 1

s2 .5 s ..4 g s .20 g ..2 g s2 .2 s

s2 .7 s ..2 g s2 ..4 g s .20 g
Place CL poles here

s ~ -2.1.s ( )s 7 .g .2 s2 .4 s 20

D'( )s .g N'( )s

.s ( )s 7 ..g 2 s2 .2 s 10
a 1 b = =10 12 3

The arrow points to a desirable place for the closed-loop poles for minimal ringing and the shortest settling time.  
To find the value
      of g needed: 0 = .s ( )s 7 ..2 g s2 .2 s 10 solve for g =

s2 .7 s

.2 s2 .4 s 20

if s 2.1 g = =
s2 .7 s

.2 s2 .4 s 20
0.504

ECE 3510  Unconventional Root Locus



Ex.3 From E3, S12 Sketch the unconventional root-locus plot for the open-loop transfer function 
below.  The root-locus should be plotted for an increasing m. 

G( )s =
.k ( )s 30

.( ).m s s 10 ( )s 4
k = 2 and is fixed

The denominator of the closed-loop transfer function:

.( ).m s s 10 ( )s 4 .2 ( )s 30

.m s2 ..4 m s s2 .6 s 40 .2 ( )s 30

.m s2 ..4 m s s2 .6 s 40 .2 s 60

.m s2 ..4 m s s2 .4 s 20

D'( )s .m N'( )s

s2 .4 s 20 .m s2 .4 s

a 2

b 20 22 =b 4

b) Can you place a closed-loop pole on the real axis at -2?  
If yes, find the value of m needed to place the pole at this location.  
If no, indicate what you think the best point on the real axis is and 
find the value of m needed to place the pole at that location.

0 = s2 .4 s 20 .m s2 .4 s

solve for m =
s2 .4 s 20

s2 .4 s
if s 2 m = =

s2 .4 s 20

s2 .4 s
8

Ex.4 From E3, S13 Sketch the unconventional root-locus plot for the open-loop transfer function 
below.  The root-locus should be plotted for an increasing x. 

G( )s =
.k ( ).5 ( )s .2 x 6

.s ( ).x s .2 ( )s .2 x
k = 2 and is fixed

The denominator of the closed-loop transfer function:

.s ( ).x s .2 ( )s .2 x .2 ( ).5 ( )s .2 x 6

.x s2 .2 s2 ..4 x s .10 ( )s .2 x 12

.x s2 .2 s2 ..4 x s .10 s .20 x 12

.2 s2 .10 s 12 .x s2 ..4 x s .20 x

.2 s2 .5 s 6 .x s2 .4 s 20

D'( )s .x N'( )s

..2 ( )s 6 ( )s 1 .x s2 .4 s 20

a 2

b 20 22 =b 4

b) Can you place a closed-loop pole on the real axis at -4?  
If yes, find the value of x needed to place the pole at this location.  
If no, indicate what you think the best point on the real axis is and 
find the value of x needed to place the pole at that location.

0 = ..2 ( )s 6 ( )s 1 .x s2 .4 s 20

solve for x =
( )..2 ( )s 6 ( )s 1

s2 .4 s 20
if s 4 x = =

( )..2 ( )s 6 ( )s 1

s2 .4 s 20
1

ECE 3510  Unconventional Root Locus   p2



ECE 3510
Implementation (Physical Realization) of Feedback System Components and Compensators

gain A.Stolp 
2/24/09, 
rev, 

One way to implement this:
x or reference 
input

Is the instrumentation amplifier: Feedback 
signal

Feedback 
signal

V o = ..1 .2
R 2

R 1

R 4

R 3
V 2 V 1

K = .1 .2
R 2

R 1

R 4

R 3

x or reference 
input

To build active compensators, use this basic circuit and then consult Table 9.10 (p555) in the Nise textbook.

R+ Should be approximately the parallel combination of the 

DC impedances of Z1 and Z2.  

This is a good way to minimize the effects of the Op-amp's bias currents. 

Beware!  This is an inverting circuit.  You will have to follow it with another inverter.

Or... you could just swap the inputs to the instrumentation amplifier, if you are using one.

The resistors used in Op-amp circuits should be 100Ω to 1MΩ, and preferably 1kΩ to 100kΩ. 

These Op-amp circuits require + and - power supplies.

To build passive compensators, consult Table 9.11 (p558) in the Nise textbook.

ECE 3510   Physical Realization Notes





PID Design Example Implementation   p.1

C( )s = .0.418
.( )s 0.1 ( )s 24.28

s
= .0.418

s2 .24.38s 2.48

s
=

.0.418s2 .10.19s 1.037

s
k d

.0.418sec

=
.k d s2 .k p s k i

s
k p 10.19

k i
1.037

secUsing the PID design from table 9.10 (p.555) in Nise:
This could be implemented with:

C( )s =
R 2

R 1

C 1

C 2

..R 2 C 1 s

1
.R 1 C 2

s

=

..R 2 C 1 s2 .
R 2

R 1

C 1

C 2
s

1
.R 1 C 2

s

If we use an instrumentation amplifier with a gain of, say 3, and invert the two inputs to "fix" the inversion above, then: 

.R 2 C 1 = =
k d

3
0.139sec

R 2

R 1

C 1

C 2
= =

10.19

3
3.397

1
.R 1 C 2

= =
k i

3
0.346sec 1

There are 4 component values to select and only 3 coefficients to match, so arbitrarily select 1 component.

Try C 1
.0.1 µF R 2

.0.139sec

C 1
=R 2 1.39 MΩ too high

Try C 1
.10 µF R 2

.0.139sec

C 1
=R 2 13.9 kΩ Use R 2

.14 kΩ

Now
R 2

R 1

C 1

C 2
= 3.397 And

1
.R 1 C 2

=
0.346

sec
So, C 2 =

sec
.0.346R 1

Combining: =
.14 kΩ

R 1

..10 µF .0.346R 1

sec
3.397 = 0

Solve: R 1

3.397 3.3972 .4
..C 1 0.346R 2

sec

.2
.C 1 0.346

sec

=R 1 977.653 kΩ Use R 1
.1 MΩ

Let   R+ = 1MΩ

C 2
sec

.0.346R 1
=C 2 2.89 µF Use C 2

.3 µF

Test: =.R 2 C 1 0.14 sec =
R 2

R 1

C 1

C 2
3.347 =

1
.R 1 C 2

0.333 sec 1 Close enough

PID Design Example Implementation   p.1



PID Design Example Implementation   p.2
Instrumentation amp gain: K inst 3 k d

.0.418sec k p 10.19 k i
1.037

sec

.R 2 C 1 = k' d

k d

3

R 2

R 1

C 1

C 2
= k' p

10.19

3

1
.R 1 C 2

= k' i

k i

3

=k' d 0.139 sec =k' p 3.397 =k' i 0.346sec 1

For standard capacitor values from =C 1
0

0.01 µF to =C 1
32

82 µF R 2
i

k' d

C 1
iCombining equations above

R 2

R 1

C 1

C 2
= k' p =

R 2

R 1

C 1

1
.k' i R 1

=
R 2

R 1

.C 1
.k' i R 1 OR R 2

..C 1 k' i R 1
2 .k p R 1

= 0

Rearrange: ..C 1 k' i R 1
2 .k' p R 1 R 2 = 0 And solve: R 1

i

k' p k' p
2 .4 ..C 1

i
k' i R 2

i

.2 .C 1
i
k' i

Finally: C 2
i

1
.k' i R 1

i

Possible solutions
C 1

i

µF
0.12
0.15
0.18

0.22
0.33
0.39
0.47

0.56
0.68
0.82

1

1.2
1.5
1.8
2.2

3.3
3.9
4.7
5.6

6.8
8.2
10
12

15
18
22
33

39
47
56
68

82

R 2
i

kΩ
1161.11
928.89
774.07

633.33
422.22
357.26
296.45

248.81
204.9

169.92
139.33

116.11
92.89
77.41
63.33

42.22
35.73
29.65
24.88

20.49
16.99
13.93
11.61

9.29
7.74
6.33
4.22

3.57
2.96
2.49
2.05

1.7

R 1
i

kΩ
81544
65235
54362

44478
29652
25090
20820

17474
14390
11933
9785

8154
6523
5436
4448

2965
2509
2082
1747

1439
1193
979
815

652
544
445
297

251
208
175
144

119

C 2
i

µF
0.035
0.044
0.053

0.065
0.098
0.115
0.139

0.166
0.201
0.242
0.296

0.355
0.443
0.532
0.65

0.976
1.153
1.39
1.656

2.01
2.424
2.956
3.548

4.435
5.322
6.504
9.756

11.53
13.895
16.556
20.104

24.243PID Design Example Implementation   p.2



A.StolpECE 3510  hw  RL8 Unconventional Root Locus Due:  Mon, 11/7

1. A compensator: C( )s =
s .2 a

s a
and a plant: P( )s =

k p

s 6

are combined to form an open-loop transfer function: G( )s = .
k p

( )s 6

( )s .2 a

( )s a

a) Sketch a conventional root-locus plot taking kp as the gain and a = 2.

b) Sketch a conventional root-locus plot taking kp as the gain and a = 4.

c) Sketch an unconventional root-locus plot taking a as the "gain".   kp is not specified.

d) Sketch an unconventional root-locus plot taking a as the "gain" and kp = 2.

e) What are the closed-loop poles if a = 4 and kp = 2 ?  Show that these poles fit on the root locus drawn in part b) 
as well as the root locus drawn in part d.

2. A compensator: C( )s =
a

s a
and a plant: P( )s =

.k p s

( )s 4 2
are combined to form an 
open-loop transfer function.

a) Sketch a conventional root-locus plot taking kp as the gain and some a < 4.

b) Sketch a conventional root-locus plot taking kp as the gain and some a > 4.

c) Sketch an unconventional root-locus plot taking a as the "gain" and kp = 2.
Answers

1. a) b) c)

d)
e) 6 .2 j

2. a)
6 .2 j

see b, above and d, at left

b) c)

ECE 3510    homework  #  RL8



ECE 3510    homework  #  RL9 Due:  Wed, 11/9 A.Stolp a

Implementation (Physical Realization) of Feedback System Components and Compensators

1. Design an instrumentation amplifier with a variable gain from approximately 1 to 40.  
This could be used as the summing (difference) block and the gain block of a feedback loop.

Your answer should use different values than my answer below.

2. Design an active circuit which could follow the circuit you just designed and implement the PID 
compensator of Example 9.5 in the Nise textbook.

Note: your capacitor values may come out overly large due to the artificially small poles and zeroes.

Your answer should use different values than my answer below.

Answers

Your answers should use different values than my answers.
1.

Feedback 
signal

.5 kΩ.125 Ω .5 kΩ

.10 kΩ
.5 kΩ

.10 kΩ

pot .10 kΩ

.5 kΩ
x or reference 
input

.100 µF
2. .1.788 µF

.10 kΩ

.20 kΩ

.20 kΩ

And either swap the inputs to the Instrumentation amplifier or follow this with a unity gain inverting amplifier.

ECE 3510   Homework RL9




