
ECE 3510  Root Locus Additional rules
7. The breakaway (and arrival) points are solutions to:

all

1

s p
i

=

all

1

s z
i

Ex:
G( )s

s 2
.s ( )s 1

Solve:
1

s

1

s 1
=

1

s 2

( )s 1 s
.s ( )s 1

=
1

s 2

.( ).2 s 1 ( )s 2 = .s ( )s 1

s2 .4 s 2 = 0 s = 3.414 s = 0.586

Breakaway (and arrival) points from the real axis (σb) are also the solutions to: d

ds
G( )s = 0 where s is a real number

(on the real axis)

Why?  Because gain = k =
1

G( )s
The breakaway point will be the point between -1 and 0 with the highest gain.

That is also the point  with the lowest G(s) and highest - G(s) )

Make some plots s ..,.8 .79 .2

0.8 0.6 0.4 0.2
0.05

0.1

0.15

0.2

1

G( )s

s

0.8 0.6 0.4 0.2
15

10

5

G( )s

s

gain = k =

The breakin point will be the point between -4 and 2 with the lowest gain.

Make some plots s ..,3.5 3.49 3.2

3.5 3.4 3.3 3.2
5.82

5.84

5.86

5.88

1

G( )s

s

3.5 3.4 3.3 3.2
0.172

0.171

0.17

G( )s

s

gain = k =

s ..,3.44 3.438 3.4

3.44 3.42 3.4
0.17158

0.17157

0.17156

0.17155

G( )s

s
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Root Locus Examples, continued  p1

Find the Break-in points for Basic Root Locus Examples, Example 11

m 2
11 G( )s =

.( )s 3 ( )s 12

( )s 6 3 n 3

=n m 1

no asymptotes

Break-away points

1

( )s 3

1

( )s 12
=

1

s 6

1

s 6

1

s 6
=

3

s 6

( )s 12 ( )s 3
.( )s 3 ( )s 12

=
( ).2 s 15

.( )s 3 ( )s 12
=

3

s 6

.( ).2 s 15 ( )s 6 = ..3 ( )s 3 ( )s 12

0 = .( ).2 s 15 ( )s 6 ..3 ( )s 3 ( )s 12

Useless solution
s2 .18 s 18 Solve: =

9 .3 7

9 .3 7

1.063

16.937 Breaks in at -16.937

Finding the jωωωω crossing point using rule 9: 

Rule 9. Phase angle of G(s) at any point s on the root locus: arg( )G( )s = arg( )N( )s arg( )D( )s =  + 180o      + 540o ...  

3. Crude servo: G( )s =
1643

..s ( )s 16.64 ( )s 53.78 Im

Like example 3 from Basic Examples

I think it crosses the imaginary axis at 29j

s .29 j G( )s =
1643

...29 j ( ).29 j 16.64 ( ).29 j 53.78

/ G( )s = =.90 deg atan
29

16.64
atan

29

53.78
178.488 deg

Re
Try 30j:

/ G( )s = =.90 deg atan
30

16.64
atan

30

53.78
180.138 deg

linear interpolation =30
180.138 180

180.138 178.488
29.916

/ G( )s = =.90 deg atan
29.916

16.64
atan

29.916

53.78
180.002 deg

close enough

Finding the jωωωω crossing gain using rule 8: 

Gain:
1

G( )s
= =

..29.916 29.9162 16.642 29.9162 53.782

1643
38

Root Locus Examples, continued  p1



Root Locus Examples, continued  p2

Find the Break-in points for Basic Root Locus Examples, Example 7

7. G( )s =
.( )s 5 ( )s 8

s2 .6 s 13
NOT

Break-away points
1

( )s 5

1

( )s 8
=

1

s 3 .2 j

1

s 3 .2 j
=

.2 s 6

s2 .6 s 13

1

s2 .6 s 13
Note the way these poles are expressed

Guess 6.3 Use this guess in all but the closest poles and zeroes

1

s 5

1

s 8

.2 ( )6.3 6

( )6.3 2 .6 ( )6.3 13
= 0 Solutions:

2.57

6.3 guess was good

Find the Departure angles from complex poles 
for Basic Root Locus Examples, Example 7

answer
114.34o 

=atan
2

8 3
10.305 deg

=atan
2

5 3
14.036 deg 10.31o 

14.04o 

atan
2

8 3
atan

2

5 3
.90 deg θ =  +180o 90o 

=atan
2

8 3
atan

2

5 3
.90 deg .180 deg 245.659 deg

=atan
2

8 3
atan

2

5 3
.90 deg .180 deg 114.341 deg

better answer

Finding the jωωωω crossing point using rule 9: 

G( )s
.( )s 5 ( )s 8

s2 .6 s 13

Try: s .5 j / G( )s = =arg( )G( ).5 j 171.193 deg

Try: s .4.5 j / G( )s = =arg( )G( )s 176.375 deg =arg( )G( )s .360 deg 183.625 deg

linear interpolation =4.5 .183.625 180

183.625 171.193
( )5 4.5 4.646

Try: s .4.646 j / G( )s = =arg( )G( )s 179.838 deg

linear interpolation =4.5 .183.625 180

183.625 179.838
( )4.646 4.5 4.64

Try: s .4.64 j / G( )s = =arg( )G( )s 179.991 deg close enough

Finding the jωωωω crossing gain using rule 8: 

Gain:
1

G( )s
=

( ).4.64 j 2 .6 ( ).4.64 j 13
.( ).4.64 j 5 ( ).4.64 j 8

= =
13 ( )4.64 2 2

( ).6 ( )4.64 2

.4.642 52 4.642 82

0.462 to be stable: k > 0.462

Root Locus Examples, continued  p2



Root Locus Examples, continued  p3

Find the Break-in points for Basic Root Locus Examples, Example 9

9 G( )s =
s 12

..s2 .4 s 13 ( )s 1 ( )s 5

Break-away points

1

( )s 12
=

1

( )s 2 .3 j

1

( )s 2 .3 j

1

( )s 1

1

( )s 5
=

( )s 2 .3 j ( )s 2 .3 j

s2 .4 s 13

1

( )s 1

1

( )s 5

1

( )s 12
=

.2 s 4

s2 .4 s 13

1

( )s 1

1

( )s 5

Guess 4 Use this guess in all but the closest poles and zeroes

1

( )4 12
=

.2 s 4

s2 .4 s 13

1

( )4 1

1

( )s 5

0 =
.2 s 4

s2 .4 s 13

1

( )s 5

1

( )4 1

1

( )4 12
Solve:

2.105

3.648

0.912

0 =
.2 s 4

s2 .4 s 13

1

( )s 5

1

( )3.648 1

1

( )3.648 12
Solve:

1.091

3.727

0.332

Close to actual 
answer of 3.712

Find the Departure angles from complex poles for Basic Root Locus Examples, Example 9

=atan
3

5 2
45 deg

answer -46.74o 

108.4o =.180 deg atan
3

1
108.435 deg

16.7o 45o 

=atan
3

12 2
16.699 deg

90o 

atan
3

12 2
atan

3

5 2
.180 deg atan

3

1
.90 deg θ =  +180o 

θ = =.180 deg .16.699 deg .45 deg .108.435 deg .90 deg 46.736 deg
Root Locus Examples, continued  p3



ECE 3510  Root Locus Departure and Arrival Angles

G( )s
1

..s2 .4 s 13 ( )s 1 ( )s 5
=

1
...( )s 2 .3 j ( )s 2 .3 j ( )s 1 ( )s 5

s 2 .3 j

=
1

..( )s 2 .3 j ( )s 1 ( )s 5
5.5556 10 3 +0.0111i

For pole at -2 + 3j 

=.180 deg arg .5.5556 10 3 0.0111i 63.412 deg

=.180 deg atan
3

1
108.435 deg

45o

=.180 deg atan
3

1
.90 deg .45 deg 243.435 deg + θ = + 180o

=180 243.4 63.4 deg
90o

If you leave out 180o (not recommended)

=atan
3

1
.90 deg .45 deg 63.435 deg + θ = 0o, + 360o

θ = .63.435 deg

G( )s
s 7

..s2 .4 s 13 ( )s 1 ( )s 5

=atan
3

5
30.964 deg

32.5o

s 2 .3 j

30.96o =
s 7

..( )s 2 .3 j ( )s 1 ( )s 5
0.0611 +0.0389i

=.180 deg arg( )0.0611 0.0389i 32.483 deg

=.180 deg atan
3

1
.90 deg .45 deg atan

3

5
212.471 deg + θ = + 180o

=180 212.5 32.5 deg



ECE 3510  Root Locus Departure and Arrival Angles  p2
G( )s

s2 .2 s 2

..s2 .4 s 13 ( )s 1 ( )s 5

=.180 deg atan
2

3
146.31 deg

.45 deg =.180 deg atan
3

1
108.435 deg

=.180 deg atan
4

3
126.87 deg

.90 deg

=.180 deg atan
3

1
.90 deg .45 deg .180 deg atan

2

3
.180 deg atan

4

3
29.745 deg + θ = + 180o

=( )180 29.75 150.25 deg

=atan
2

3
33.69 deg

=atan
1

6
9.462 deg

=atan
1

2
26.565 deg

.90 deg

=atan
4

3
53.13 deg

=atan
1

2
atan

2

3
atan

1

6
atan

4

3
.90 deg 34.533 deg - θ = + 180o

=( )180 34.5 145.5 deg



ECE 3510 Root Locus Design Examples
Recall the simple crude servo from lab 1

G( )s
1643

..s ( )s 16.64 ( )s 53.78

σ = =
0 16.64 53.78

3
23.473

PI To eliminate steady-state error (for constant inputs)
& perfect rejection of constant disturbances

Note: The DC motor has a pole at zero and should do zero the steady- 
state error by itself, but nonlinearities prevent it from doing it well.

G c( )s .1643
..s ( )s 16.64 ( )s 53.78

s 0.1

s
Add pole at 0 and zero at -0.1

k p

k i

s

C( )s = k p

k i

s
= .k p

s
k i

k p

s

LAG An alternative is a Lag Compensator, 
here with a pole at -0.1 and a zero at -0.5

G c( )s= .1643
..s ( )s 16.64 ( )s 53.78

s 0.5

s 0.1

This works very much like the PI 
controller, but without the need for 
active components.

The area 
near the 
origin

Root Locus Design Examples   p.1



Root Locus Design Example   p.2
Let's keep the pole at 0 and zero at -0.1 for elimination 
of steady-state errors and rejection of disturbances

CL poles at p 7.06 .7.06 j
k = =

1

G( )7.06 .7.06 j
3.417

and 7.06 .7.06 j

At gain of 3.44
=atan

Im( )p

Re( )p 53.78
8.593 deg

135o
8.6o 36.4o

=atan
Im( )p

Re( )p 16.64
36.388 deg

This is a point in the root locus because:

=.8.6 deg .36.4 deg .135 deg .135 deg .135 deg 180 deg

PD or PID To Improve the dynamic response

Want to double the speed

Want poles to move to: p 14 .14 j
14 .14 j

=atan
Im( )p

Re( )p 53.78
19.389 deg

135o
19.4o 79.3o

Unfortunately, this point in NOT on the root locus =atan
Im( )p

Re( )p 16.64
79.321 deg

=atan
Im( )p

Re( )p 53.78
atan

Im( )p

Re( )p 16.64
.135 deg 233.71 deg

Maybe we could add a zero so that it's angle is:

θ z
.233.71 deg .180 deg =θ z 53.71 deg

x = =.Im( )p
1

tan θ z
10.28

z Re( )p .Im( )p
1

tan θ z
135o

19.4o 79.3o
=z 24.28

x
24.28

G c( )s .1643
..s ( )s 16.64 ( )s 53.78

.( )s 0.1 ( )s 24.28

s

k = =
1

G( )14 .14 j
7.24 is the required gain

Root Locus Design Examples   p.2



Root Locus Design Examples   p.3
We have designed a our compensation with the following:

A pole at the origin

A zero at -0.1

A zero at -24.28

Gain of 0.418

Find the kp, ki, & kd of a PID controller.

k p

k i

s
C( )s = k p

k i

s
.s k d =

.s k p

s

k i

s

.s2 k d

s
.k d s

=
.s k p k i

.s2 k d

s
= .k d

s2 .
k p

k d
s

k i

k d

s

gain = k d 0.418
.( )s 0.1 ( )s 24.28 = s2 .24.38 s 2.43

= s2 .
k p

k d
s

k i

k d

k i

k d
= 2.43 k i

.k d 2.43 =k i 1.016

k p

k d
= 24.38 k p

.k d 24.38 =k p 10.191 Notice: =
k i

k p
0.1 ~ 0.1

Notice that the proportional gain is actually almost 3 times higher than it was before. =.3 3.44 10.32

LEAD An alternative to the differentiator is a Lead Compensator.

Instead of a single zero with: =θ z 53.71 deg

How about a zero with θ z
.70 deg And a pole with θ p

.70 deg .53.71 deg

=θ p 16.29 deg
x = =.Im( )p

1

tan θ z
5.096

z Re( )p .Im( )p
1

tan θ z
=z 19.096

16.3o 70o

xp = =.Im( )p
1

tan θ p
47.907

p Re( )p .Im( )p
1

tan θ p
=p 61.907

This example is actually a PI-Lead controller

Root Locus Design Examples   p.3



Root Locus Design Examples   p.4
Problems with the differentiator

1. Tries to differentiate a step input into an impulse -- not likely.
You'll have to consider how your differentiator will actually handle a step input and how your amplifier will saturate.

If the differentiator and amplifiers saturate in such a way the the "area under the curve" approximates the impulse 
"area under the curve", then this may not be such a problem.  It may not be as fast as predicted from the linear 
model, but it may be as fast as the system limits allow.  (Pedal-to-the-metal.)   

2. It's a high-pass filter and can accentuate noise.  
This is actually common to all compensators that speed up the response.

3. Requires active components and a power supply to build.  
Usually no big deal since your amplifier (source of gain) does too.

4. Is never perfect (always has higher-order poles), but then neither is anything else.  Especially in mechanical systems, 
these poles usually are well beyond where they could cause problems. 

Alternatives:

1. Lag-Lead or PI-Lead compensation.  This eliminates the differentiator, but it is still a high-pass filter that can 
be a noise problem and it could still saturate the amplifier if the input changes too rapidly.

Be sure to check for saturation problems.

2. Place the differentiator in the feedback loop.  The output of the plant is much less likely to be a step or to 
change so rapidly that it causes problems. 

k pDifferentiation in the feedback

P( )s

k i

s

.k d s Note: The differential signal is often taken from a 
motor tachometer when the output is a position.  
Then you don't need a separate differentiator circuit, 
just a separate gain for that signal.

Find the kp, ki, & kd of this controller.

.F( )s C( )s = .k p
k i

s
1 .k d s = ...k p k d

s
k i

k p

s

1

k d
s = ..k p k d

.s
k i

k p
s

1

k d

s

C( )s F( )s
For our example: = .0.418

.( )s 0.1 ( )s 24.28

s

k d
1

24.38
=k d 0.041

k p
0.418

k d
=k p 10.191

k i
.k p 0.1 =k i 1.019

In this case the open-loop zero in the feedback loop IS NOT in the 
closed-loop.  This turns out to make the step response slower than 
predicted by the second-order approximation, but try a simulation, 
you may be able to use significantly more gain with no more 
overshoot.  The differentiator in this position inhibits overshoot.

Root Locus Design Examples   p.4



PI and PID Design Examples   p.5
Ex.2, from S16 Exam 3 Consider the transfer function: G( )s

s 5

.( )s 1 s2 .4 s 20
a) Find the departure angle from a complex pole.

Angles:
from pole at -1 θ p1

.180 deg atan
4

1
=θ p1 104.036 deg

from pole at -2-4j θ p2
.90 deg =θ p2 90 deg

from zero at -5 θ z atan
4

3
=θ z 53.13 deg .39.09 deg

θ = =.53.13 deg .90 deg .104.036 deg .180 deg 39.094 deg

b) Draw a root locus plot.  Calculate the centroid 
and accurately draw the departure angle.

53.13 .104.04 deg
σ 5 1 2 2

2
=σ 0

c) Is there any decent place to locate the closed-loop poles? NO

d) You would like to place your closed-loop poles 
to get a settling time of 1/2 sec and 0.656% 
overshoot.  Add the simplest possible 
compensator to accomplish this and calculate 
what the compensator should be.  

90

2% settling time: T s =
4

a
a = =

4

1

2

8

Overshoot: OS = e
.π a

b %OS = .100% e
.π a

b

a

b
=

ln( )OS

π
= =

ln( )0.00656

π
1.6 b = =

8

1.6
5

Pole should be at -8 + 5j
170.46

Angles:

from pole at -1 =.180 deg atan
5

7
144.462 deg

.120.96 deg
144.46

from pole at -2+4j =.180 deg atan
1

6
170.538 deg

from pole at -2-4j =.180 deg atan
9

6
123.69 deg

from zero at -5 =.180 deg atan
5

3
120.964 deg

123.69
=.144.462 deg .170.538 deg .123.69 deg .120.964 deg 317.726 deg

θ z
.317.726 deg .180 deg =θ z 137.726 deg

=tan( ).137.726 deg .90 deg 1.1 =
x

5
x .5 1.1 =8 x 2.5 C( )s = s 2.5

G c( )s
.( )s 5 ( )s 2.5

.( )s 1 s2 .4 s 20
s 8 .5 j Check: =arg

.( )s 5 ( )s 2.5

.( )s 1 s2 .4 s 20
180 deg

PI and PID Design Examples   p.5



PI and PID Design Examples   p.6
e) What is the gain?

k
1

G c( )s
= =

.( )8 .5 j 1 ( )8 .5 j 2 .4 ( )8 .5 j 20
.( )8 .5 j 5 ( )8 .5 j 2.5

13.059

f) What is the steady-state error for a unit-step input?

G c( )s
.( )s 5 ( )s 2.5

.( )s 1 s2 .4 s 20
G c( )0 =

.( )0 5 ( )0 2.5

.( )0 1 02 .4 0 20
= =

.( )5 ( )2.5
.( )1 ( )20

0.625

=G c( )0 0.625 e step = =
1

1 .k 0.625
10.91 %

g) If this steady-state error was a little too big, what would be 
the very simplest way to reduce it?

turn up the gain

Ex.3, from S17 Exam 3
m 0

a) Sketch the root locus plot of, G( )s
100

..( )s 25 ( )s 40 ( )s 70 n 3

σ C = =
25 40 70

n m
45 =n m 3 so asymptotes are at + 60o & 180o  

The gain is set at 452, so that one 
of the closed-loop poles is at,

s 24.48 .27.2 j

Further calculations yield:
Settling time: .0.163 sec
% overshoot: .5.92 %
Steady-state error to a unit-step input: 60.8%

b) You wish to increase the frequency of ringing to 40 rad/sec 
without changing the % overshoot at all.  Where should the 
closed-loop pole be located?

a

b
= =

24.48

27.2
0.9 new b 40 new a = =.0.9 b 36

New location: s 36 .40 j

c) Add a LEAD compensator so that you will be able to place 
the closed-loop pole at the location found in b).  
Add the new zero at -30.  Find the location of the new pole.

Angles:

from pole at -25

θ 25
.180 deg atan

40

36 25
=θ 25 105.376 deg

from pole at -40

θ 40 atan
40

40 36
=θ 40 84.289 deg

from pole at -70

θ 70 atan
40

70 36
=θ 70 49.635 deg

from new zero at -30

θ 30
.180 deg atan

40

36 30
=θ 30 98.531 deg

PI and PID Design Examples   p.6



θ 25 θ 40 θ 70 θ 30 θ p = .180 deg PI and PID Design Examples   p.7

θ p
.180 deg θ 25 θ 40 θ 70 θ 30

=θ p 39.23 deg

p 36
40

tan θ p
=p 84.993 = 85

G c( )s
.100 ( )s 30

...( )s 25 ( )s 40 ( )s 70 ( )s 85

Check: =arg
.100 ( )s 30

...( )s 25 ( )s 40 ( )s 70 ( )s 85
179.996 deg

d) With the compensator in place and a closed-loop 
pole at the location desired in part b)

i) What is the gain?
k

1

G c( )s
=k 1369

ii) What is the 2% settling time? Use the second-order approximation.

T s = =
4

36
0.111 sec

iii) What is the steady-state error to a unit-step input?

G c( )0 = =
.100 ( )0 30

...( )0 25 ( )0 40 ( )0 70 ( )0 85
5.042 10 4 e step = =

1

1 .k G c( )0
59.161 %

e) Add another compensator: C 2( )s
s 2

s
and maintain the gain of part d)

i) What is this type of compensator called and what is its purpose?

PI, used to eliminate steady-state error

ii) Calculate what you need to to show that this compensator achieved its purpose.   

G c( )s .
.100 ( )s 30

...( )s 25 ( )s 40 ( )s 70 ( )s 85

( )s 2

s

G c( )0 = ∞ e step =
1

1 .k ∞
= .0 %

f) With both compensators in place, is there possibility for improvement (quicker settling time speed 
and/or lower ringing)? If yes, what would be the simplest thing to do?  Justify your answer.

A quick sketch of the new root-locus 
shows that simply decreasing the 
gain would improve the system

move 
down 
here

PI and PID Design Examples   p.7



ECE 3510    Root  Locus Design Crib Sheet  A.Stolp
3/11/09,
3/8/10

Using 2nd-order approximation:
N( )s

( )s a 2 b2
=

N( )s

s2 ..2 a s a2 b2
=

N( )s

s2 ...2 ζ ω n s ω n
2

ω n
2

= a2 b2 ω n = natural frequency

.ζ ω n = a

ζ =
a

ω n
=

a

a2 b2

= damping factor ζ = sin atan
a

b

Overshoot: OS = e

.π a

b %OS = .100% e

.π a

b a

b
=

ln( )OS

π

angle of constant damping line: .90 deg atan
a

b

2% settling time: T s =
4

a
=

4
.ζ ω n

Time of first peak: T p =
π
b

Static error constant (position): K p = lim
0s

..K C( )s G( )s e step( )∞ = e step =
1

1 K p
Nise p378

Lag compensation improves Kp, Kv and Ka by
z c

p c
IE: K pc ~ .K puc

z c

p c

Searching along a line of constant damping:

Try s values, choosing b: s = .a

b
b .b j Test: arg( )G( )s +180o or Re( )G( )s >> Im( )G( )s

Linear interpolation: new b = b 1
.

b 2 b 1

Im G s 2 Im G s 1
Im G s 1

Can also try "a" values with slight modification of the above.

Weird forms from Nise book:

σ d = a %OS = .100% e

.ζ π

1 ζ
2

p195

ω d = b ζ =
ln( )OS

π2
( )ln( )OS 2

T p =
π

.ω n 1 ζ2
p195 p194

p378 Static error constant (ramp): K v = lim
0s

...s K C( )s G( )s e ramp =
1

K v(velocity)

Static error constant (parabola): K a = lim
0s

...s2 K C( )s G( )s e parabola =
1

K a(acceleration)

ECE 3510    Root  Locus Design Crib Sheet   p1  



A.Stolp
2/25/10ECE 3510    homework   RL3 Due:  Wed, 10/26

1. Problem 4.5 (p.119) in the Bodson text.

a) Sketch (by hand) the root-locus plot for the following open-loop transfer function:

Apply only the main rules (Section 4.4.2 in text or the first page of class notes) 

G( )s =
.s ( )s 1

.( )s 2 2 ( )s 3

b) Repeat part a) for: G( )s =
( )s 3

.s ( )s 9 3

c) Repeat part a) for: G( )s =
( )s a

.( )s b s2 .2 s 2
a > 0 b > 0 k > 0

a, b, & k are all positive, real numbers

Also give condition(s) that a and b must satisfy for the closed-loop system to be stable for sufficiently high 
gain (k) (note that you do not need to apply the Routh-Hurwitz criterion, nor provide the range of k for which 
the system is closed-loop stable).

2. Problem 4.12 in the Bodson text.
Sketch the root-locus for the open-loop poles shown at right, using only the main rules.  
There is a zero at  s = 0, two poles at s = -1 and two poles at s = -1 ± j.

j

dbl

1

j

The following review questions and problems come from the Nise 3rd Ed., starting on page 471, 
Or 4th Ed., starting p 473.  If you are using the 4th Ed., clearly state that on your homework.

3. Nise, Ch.8, review question 3, rephrased here:  If G(s1) = 5 / 180o, is the point s1 on the root locus?  
If yes, what gain factor would place a closed-loop pole at s1? 

4. Nise, Ch.8, review questions 4, 6, 7, 8, 9, 10.

5. Nise, Ch.8, problem 3

6. a) Find the break-in point for Nise, problem 3a, above.  Note, the math here may drive you nuts, but you may 
simply test and prove that a point you guess is correct.

b) Find the break-away point for Nise, problem 3d, above

7. Problem 4.11 in the Bodson text. (Hint: do part c before b)
a) Sketch the root-locus for the open-loop poles shown at right.

There is one zero at s = 0 and two poles at s = 1. dbl

c) Give the location(s) of the break-away point(s) (or arrival) on the real axis. 1

b) Give the range of gain k (k > 0) for which the system is closed-loop 
stable, and give the locations of the jω axis crossings.

ECE 3510    homework  RL3  p.1



Answers

1.a) 1.b) 1.c)

trpl
dbl

b a

σ
2. Stability at high gain:

>a 0 b > 2 a

5. a)
b)

c)

5. d)

b) k>2 -->
6. a) 4 7.

b) 3.25 dbl

/
c) 1, -1

ANSWERS TO REVIEW QUESTIONS
1. The plot of a system's closed-loop poles as a function of gain
2. (1) Finding the closed-loop transfer function, substituting a range of gains into the denominator, and factoring
    the denominator for each value of gain. 
    (2) Search on the s-plane for points that yield 180 degrees when using the open-loop poles and zeros.
3. Yes, K = 1/5
4. No
5. At the zeros of G(s) and the poles of H(s)
6. (1) Apply Routh-Hurwitz to the closed-loop transfer function's denominator. (2) Search along the imaginary axis for  / 

G(s) = +180o. (3) Use a computer with something like Matlab SISO tool to find the crossover point(s). (only need 2 ans)
7. If any branch of the root locus is in the rhp, the system may be unstable.  
    If the gain places one of the closed-loop poles on that part of the branch, it will be unstable.
8. If the branch of the root locus is vertical, the settling time remains constant for that range of gain on the
    vertical section.
9.  The natural frequency is the distance of a pole from the origin.  If a region of the root locus is circular and the
     center of the circle is at the origin, then the natural frequency would not change over that region of gain.
10. Determine if there are any break-in or breakaway points
11. (1) Poles must be at least five times further from the imaginary axis than the dominant second order pair,
      (2) Zeros must be nearly canceled by higher order poles.
12. Number of branches, symmetry, starting and ending points
13. The zeros of the open loop system help determine the root locus. The root locus ends at the zeros. 
      Thus, the zeros are the closed-loop poles for high gain.

3.
4.
 |
 |
\|/

ECE 3510    homework  RL3  p.2



ECE 3510    homework  RL4 Due:  Fri, 10/28 A.Stolp a

1. A root - locus is sketched at right.
The open - loop transfer function has one zero at s = -1 and two poles at s = 1 +  j .

Im

G( )s =
s 1

s2 .2 s 2
=

s 1
.( )s 1 j ( )s 1 j

a) Find the departure angle from the complex pole 1 +  j .

Re
b) It looks like the root-locus crosses the jω axis at 2   

Determine if this is true.  
Clearly show your work, guesses don't count.

c) Regardless of what you found in part b), continue to 
assume that the root-locus crosses the jω axis at 2.  
Give the range of gain k for which the system is 
closed-loop stable.

2. A root - locus is sketched at right.

G( )s =
.3 ( )s 2

..s ( )s 5 s2 .6 s 25

Find the departure angle from the complex pole -3 +  4j .

3. Problem 4.13 in the Bodson text.

4. a) Nise, Ch.8, problem 4.  Note: the answers are different for the 3rd & 4th editions. 
(6th edition p.6 is like 4th ed. p.4)

b) Also find the point where the root locus crosses the imaginary axis. 
c) Find the range of gain for which the system is "stable".
d) Find the arrival angle at the top zero (departure of top pole in 4th Ed.).

Answers

1. a) .117 deg 4. 3rd Ed. 4. 4th Ed.
a) d) .161.6 deg

breakaway: 2.434
b) YES k 0.5

crossing: s .1.773 j k = 0.4
c) k > 2 b)

c) k < 0.5 k > 0.4
s = .0.817 j

2. .3.73 deg
d) .122.5 deg

3. .206.6 deg

.45 deg

a) 0.387

ECE 3510    Homework  RL4  



ECE 3510    homework   RL5 Due: Tue, 11/1 A.Stolp g

These problems should be done using MATLAB or some other program that creates root-locus plots.  Refer to a help 
sheet attaced to this homework to get started.  You will need to compare shapes of root-locus (RL) plots and speeds of 
step responses.  Unless you manually set your plot limits, Matlab will automatically scale on your plots.  This can make 
it very hard to compare them or to determine the "45o" line.

1. a) Homework RL2 problem 1c. G( )s
1
..s ( )s 2 ( )s 4

Experiment with moving the pole at -4.

i) Describe what happens when you move it to the left. 
Describe what happens when you move it to the right, especially when you move it right of -2.  
Put the pole back at -4.  

ii)

b) Describe what happens when you add a fourth pole left of the jω axis. Try different positions. Erase the added pole.

c) Describe what happens when you add a zero left of the jω axis. Try different positions.

For the remaining problems:
Print one or more plots for each problem.  Each plot should be labeled clearly on the same page as the plot.  If you 
added  poles and/or zeros (a compensator) make sure it is clear which one(s) were added or what your C(s) is.    Plot 
of the root locus should always show the point(s) on the root locus you determined to be the "best" position for the 
CL pole(s) with squares (like Matlab does).  Indicate the gain (k) used.  
"Best" = Fastest step response to get to and stay within 4% of the desired final response (usually 1 for step response). 
Limit overshoot to about 4%.  To determine speed information, refer to the step response curve.  Prints of those curves 
are nice, but not required.  Be careful, if Matlab changes the scales on your plots it can be very hard to compare them.

2. a) Homework RL2 problem 1c (see above for G(s)).  Add a compensator to your system.  This compensator will add 
one pole and one zero to the open-loop (OL) transfer function.  The new pole must lie somewhere between -10 and 
+2, you choose where.  Same goes for the zero.  Choose the locations of your added OL pole and OL zero and 
gain (k) to get the "best" response.  

b) Homework RL2 problem 1d. G( )s
s 7

..s ( )s 2 ( )s 4
Just find the "best" gain and print an RL plot.

c) Homework RL2 problem 1d.  Repeat part a) above for this system, only this time your added pole and zero are 
limited to -16 to +2.

3. a) Homework RL3 problem 1a G( )s =
.s ( )s 1

.( )s 2 2 ( )s 3
Just print an RL plot. Note that the 
step response goes to zero, why?

b) Homework RL3 problem 1b. G( )s =
( )s 3

.s ( )s 9 3
Just find the "best" gain and print an RL plot.

c) Homework RL3 problem 1b.  Add a compensator. Your compensator may have up to 2 poles (0, 1, or 2) and they 
may be complex.  Same for the zeros.  All must lie between -20 and +2 and   -12j and +12j.  Choose the best 
possible poles and/or zeros, find the best gain and plot like you did for 1b.

4. Homework RL4 problem 1. G( )s =
s 1

s2 .2 s 2
Confirm the departure angles (With a small gain, place a CL pole very close to 1 + 1j and figure out the angle 
from its location.).  Find the true Im-axis crossing point and the gain at that point.  Find the break in point.

5. a) Enter in the plant G(s) of the crude servo:  
Add a PI compensator (a pole at 0 and a zero at -0.1).

G( )s =
1643

..s ( )s 16.64 ( )s 53.78

Find the gain for a 0.707 damping factor.  Record the time it takes the step response to reach 1 the first time.  
Save this: Compensators –> Store/Retrieve etc..

b) Add a zero at -16.64 and repeat, saving under a different name.

c) Adjust the zero location further to the right while pushing the gain and watching the step response to find an even 
better combination.  Again record the time it takes the step response to reach 1 the first time and save.  
Print the Root locus and the step response for this case.

d) You will be using this device to build widgets.  The time per widget is 10 times the time you recorded in each case.  
Your profit per widget is 1 cent.  Your fixed costs per 8-hour day is $250.  Describe the results to your company of 
each of the 3 compensators above. ECE 3510    homework   RL5   p1



ECE 3510    homework   RL5   p2
6. Create the most interesting root locus plot that you can with no more than 10 poles and 10 zeros.  Have some fun 

with this.  You can go over 10 poles and zeros if you want, but the fewer the better to make the figure you want.

Answers
1. a) i) If the pole at -4 is moved further to the left:

Curved part of RL straightens out because the centroid moves to the left.
The gain required to reach any given damping factor goes up.
The breakaway point moves closed to -1

ii) If the pole at -4 is moved to the right the opposite effects occur, plus, if moved right of zero at -2 effects 
get worse, fast.

iii) Adding a pole makes matters worse.  It makes the curves bend down and makes a new curve bend off to the left.
iv) Adding a zero makes matters better.  Especially if placed on top of the pole at -2.  Further to the right of that 

and it tends to make a dip in the step response.  If that can be tolerated, then increased speeds are possible 
with increased gain.

2. a)

C( )s
s 2

s 10

Gain is about 56

Your answer may be 
different, especially, 
your zero may be to 
the right of -2.

b) See answers for RL2, gain is about 0.92 c) you're on your own

3. a) See answers for RL3 System has a zero at the origin.

b) See answers for RL3
3b step response w/gain = 1000

Gain of 346 puts the CL poles on the 45o line, BUT, because of 
the zero at about -1.3, a gain of 1000 is a almost twice as fast.

A gain of 800 with a feedforward gain of 1.04 will make it 4 times faster, 
but will result in a long-term +4% error in the output.  If only we could 
limit the feedforward gain to the first part of the response.  Ahhh... 
maybe that explains the weird feedback / feedforward scheme in lab 5b.

3b step response w/gain = 800
and 1.04 feedforwardc)

gain = 253

gain = 253
C( )s

s 9

1
Your answer may be 
different

With gain = 253, overshoot is too high, 
gain = 215 meets requirements.

4. My close point: s 1 .945 .1.1 j =arg s 1 ( )1 j 118.811 deg close to 117 deg

Place CL pole at crossing, gain = 2
Move CL pole to break in point, location shows at -3.23, at a gain of 8.47.

4.d)  a. You go broke at  $168/day.     b. You make  $101/day.    ECE 3510    homework   RL5   p2
c. You make $161/day.  Your answers may be quite different 
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Matlab’s SISO tool (single-input/single-output tool )
The version I used was R2016b, but this may still be of some help for other versions.

3/9/19
The SISO tool can be used to draw and manipulate rool-locus plots of single-input / single-output
systems.  It is part of the Matlab Control System Toolbox.

To use the SISO tool, you first need to create the open-loop transfer function “object” in Matlab.  There
are several  ways to do this, but I recommend this way:
1. Define the variable “s” as a special TF model s = tf('s');

This only needs to be done once, after that any other expression of s will automatically be
interpreted by Matlab as a transfer function.

2. Enter your transfer function as a rational expression in s For example,   G = s/(s^2 + 2*s
+10);
Now G is a “transfer function object” of the transfer function 

Now type: sisotool(G)   
3. You can close the Bode plot views by: View -> Float .  Now you can close the two Bode windows,

leaving the Root Locus and Step Response windows.  View -> Left/Right will return to larger
windows.

4. The little red squares (or circles) on the root locus (RL) plot show the locations of the closed-loop
(CL) poles.  You can grab any of these and move then to a new location.  Note how the other(s)
move as well.  Note the effects on the step response.  Also note the information given at the bottom
of the window as you grab the CL pole.

5. If you choose the ROOT LOCUS EDITOR tab, you can add a pole or zero to the real axis by: click X
or O button –> click on plot where you want the pole or zero.  You can later drag it left and right. 
You can erase it with the eraser tool.   You can add complex poles or zeros using the buttons that
look like x/x or o/o fractions.

6. If you right-click on the root locus plot, you can open “Edit Compensator” and see the gain as well as
add, delete or change compensator poles or zeros.  (Right-click within the “Dynamics” window to get
options.)  Note: Each time you add a pole or zero it adds it at -1.  Then you have to select it and
change the position.  The new pole will not automatically be selected.  (Big pain in posterior.)

7. If you’ve added any poles or zeroes, then you may have noticed that the format of the compensator
is a bit weird.  They are in a (1 - s/p) or (1 - s/z) form.  To fix this and get gain numbers that will
match mine, Choose the CONTROL SYSTEM tab –> Preferences -> Options, click the
Zero/pole/gain option to change the format of the poles and zeros from (1 + s/p) to (s + p). 

8. If you move any compensator poles or zeros into the right-half plane the gain suddenly becomes
negative.  I don’t know why or how to fix this, just keep it in mind.  If you figure out how to eliminate
this weirdness, let me know.  

9. In order to effectively evaluate changes, you will need to inhibit Matlab’s constant rescaling of the
plot: right-click anywhere on root-locus plot area –> Properties –> Limits –> uncheck the Autoscale
boxes and set limits to match the aspect ratio of your window.

You can’t modify the Plant poles and zeros (at least as far as I know).

Play with this until you are ready to start the Homework.

Start Homework RL5 .  Read up through problem 1a and refer back to homework RL2.  Back in the
Matlab Command window, type:  G = 1    to create a very simple transfer function. That way all your
poles and zeros can be manipulated in the SISO tool.  type: sisotool(G) .  Reset you preferences as
above (items 3, 7, & 9).  (SISOtool used to have a way to import a new G, i don’t see that option
anymore.)   Add poles at 0, -2, and -4 so that C(s) = 1 x 1/s(s+2)(s+4).  You are now ready to work
problem 1a.

More information
Google, sisotool help and Matlab help.



A.StolpECE 3510    homework  #  RL6 Root Locus Design Due: Fri, 11/4
a

1. Choice of gain.  Each root-locus plot below shows a number of closed-loop pole locations labeled "a", "b", "c", etc..  
Each plot has at least two poles.  In answering the questions below consider all the closed-loop poles, not just the 
pole at the labeled location.  That is, consider where the other pole(s) are when the gain places the labeled pole at the 
labeled location.  Use a 2nd order approximation in all cases and neglect the partial-fraction coefficients of the poles

i) List the closed-loop pole locations (labeled "a", "b", "c", etc.) in order of gain factor, smallest to largest.

ii) List the closed-loop pole locations in order of speed of response (measured as the time to get within 4.4% 
of the final step resonse).  List them slowest to fastest.

iii) List the closed-loop pole locations which would result in a step response with absolutely no overshoot.

iv) List the closed-loop pole locations (not listed in part b) in order of % overshoot.  List them least to most.

v) List the closed-loop pole locations in order of steady-state error to a step input.  List them worst to best.
(most error to least)

a)

b)

c)

2. Nise 3rd & 4th: Ch.8, problem 46.

5th ed.: Ch.8, prob 55, 6th: Ch.8, p 57.

  Read sec 4.6 in Nise book.  Modify eq. 4.38 (all ed.) with: %OS = e
.π a

b (see Bodson p.51).  

a) If you find that more than one value of K will work, choose 
the highest K.  Usually this results in the best steady-state 
error.  In this case that should not theoretically matter 
because of the motor's pole at 0, but in reality, it still will. 

Modify eq. 4.42 with: T s =
4

.ζ ω n
=

4

a

Answers

1. a) i) b, e, c, d, a ii) b, e, c, a, d OR b, e, a, c, d iii) b, e, c iv) d, a

v) all will result in ess(∞) = 0 because of open-loop pole at origin. If that were not so then list in order of gain.

b) i) g, j, k, h, i, f ii) f, g, j, k, h, i iii) g, j, k, h, iv) i, f v) same as i)

c) i) c, d, e, a, b ii) c, d, e, b, a iii) b, c iv) a, e, d

v) all will result in ess(∞) = 0 because of open-loop pole at origin. If that were not so then list in order of gain.

2. a) 102300 b) 11.14% c) K < 715000 ECE 3510    Homework  RL6



ECE 3510  hw  RL7 Root Locus Design Due:  Sat, 11/5 A.Stolp b

You may sketch root locus plots and make calculations using a computer program.
Questions and problems from Nise are the same for 3rd & 4th editions unless specified otherwise.

1. Nise Ch. 9 review questions: 3, 4, 5, 9, 10, 11, & 12.

2. Nise Ch. 9 problem 1.  For an explanation of the static error constants & calculation of steady-state error, 
see Nise, section 7.3 or Root Locus Design Crib Sheet.  If you use Bodson eq 4.6, include the gain factor 
(multiply P(0)C(0) by K).

Use G(s) and damping ratio (factor) from 3rd ed:

G uc( )s
1
.( )s 3 ( )s 6

uc =uncompensated ζ 0.707

Design a PI controller and show that it works.

3. Nise Ch. 9 problem 3 Use G(s) and 10% overshoot from 3rd ed: G uc( )s
1

..( )s 1 ( )s 3 ( )s 5
a) The static error constant is Kp on our Crib Sheet.

b) Want to improve to  Kp = 4 using lag controller. 

c) I suggest you use the SISO tool to show the improvement.

4. Nise Ch. 9 problem 6 Use G(s) from 3rd ed: G uc( )s
1

...( )s 1 ( )s 2 ( )s 3 ( )s 6
use: ζ 0.707

a) Shorten settling time to half of what it is without PD compensation.

b) Calculate the steady state error for a step input.

For the justification of the 2nd-order assumption, see section 8.7 in Nise.  Especially, read the first numbered 
list and item 3 in the second list.  (p. 452 in 3rd ed, p455 in 4th ed, p.416 in 6th ed.)

5. Nise Ch. 9 problem 8 Use G(s) and 20% overshoot from 3rd ed: G uc( )s
1
..s ( )s 5 ( )s 15

a) Shorten settling time to 1/4 of what it is without PD compensation.

b) Change design a lead compensator.  Move the zero you found in part a) to -3 and finding the required pole.

6. You have designed a compensator with the following:

A pole at the origin A zero at -0.5 A zero at -10 Gain of 20

Find the kp, ki, & kd of a PID controller.

k p

k i

s

.k d s

ECE 3510  Homework RL7



ECE 3510  Homework RL7
Answers

1. ANSWERS TO REVIEW QUESTIONS
  1. Chapter 8: Design via gain adjustment. Chapter 9: Design via cascaded or feedback filters.
  2. A. Permits design for transient responses not on original root locus and unattainable through simple gain adjustments. 
      B. Transient response and steady-state error specifications can be met separately and independently without the
           need for tradeoffs
  3. PI or lag compensation    4. PD or lead compensation    5. PID or lag-lead compensation
  6. A pole is placed on or near the origin to increase or nearly increase the system type, and the zero is placed near
      the pole in order not to change the transient response.
  7. The zero is placed closer to the imaginary axis than the pole. The total contribution of the pole and zero along with

      the previous poles and zeros must yield 180o at the design point. Placing the zero closer to the imaginary axis
      tends to speed up a slow response.
  8. A PD controller yields a single zero, while a lead network yields a zero and a pole. The zero is closer to the
      imaginary axis.
  9. Further out along the same radial line drawn from the origin to the uncompensated poles
  10. The PI controller places a pole right at the origin, thus increasing the system type and driving the error to zero.
        A lag network places the pole only close to the origin 
        yielding improvement but not zero error.  

  11. The transient response is approximately the same as the uncompensated system, except after the original
       settling time has passed. A slow movement toward the new final value is noticed.
  12. 25 times; the improvement equals the ratio of the zero location to the pole location.
  13. No; the feedback compensator's zero is not a zero of the closed-loop system.
  14. A. Response of inner loops can be separately designed; B. Faster responses possible; 
       C. Amplification may not be necessary since signal goes from high amplitude to low.

2. Uncompensated: CL pole s uc 4.5 .4.5 j K uc 22.5 44.4% steady-state error

%OS = 4.32% T s = 0.889 sec

For: C( )s =
s 0.1

s
CL pole s c 4.472 .4.472 j K uc 22.5 no steady-state error

%OS = 4.32% T s = 0.894 sec Using 2nd-order approximation

3. Uncompensated: s uc 1.4 .1.91 j K 19.9 steady-state error is about 43%

Compensated, want Kp = 4, steady-state error of 20% Try: C( )s =
s 0.3

s 0.1
That should yield a 3x 
improvement in Kp.

Matlab output shows a good reduction in steady-state error.

4. Uncompensated: s uc 1.05 .1.05 j K 16.65

Want s c 2.1 .2.1 j Need zero at 0.604

Possible problems with 
the 2nd-order assumption:

Pole at -0.771 is not close enough to the zero at -0.604 to cancel it.
Pole at -7.03 is not 5 times farther from jω axis than -2.1.

b) 0.753 75% error!  That zero close to the origin is NOT OK.

5. Uncompensated: s uc 1.809 .3.533 j K 258

Want s c 7.236 .14.132 j Need zero at 5.422

Compare to example 9.7 (table 9.8), similar to compensated system except gain. 
Gain is similar to uncompensated system.

b) C( )s =
s 3

s 94.43

6. 210, 100, 20 ECE 3510    Homework RL7




