\qquad
Name \qquad

$$
\mathrm{H}(\mathrm{~s})=\frac{\mathrm{k} \cdot \frac{1}{\mathrm{~s} \cdot(\mathrm{~s}+2)}}{1+\mathrm{k} \cdot \frac{1}{\mathrm{~s} \cdot(\mathrm{~s}+2)}} \cdot \frac{\mathrm{s} \cdot(\mathrm{~s}+2)}{\mathrm{s} \cdot(\mathrm{~s}+2)}
$$

$$
\text { denominator: } \quad \mathrm{s} \cdot(\mathrm{~s}+2)+\mathrm{k}=\mathrm{s}^{2}+2 \cdot \mathrm{~s}+\mathrm{k}=0
$$

Example 2 from p. 91 of text

$$
\begin{gathered}
\mathrm{G}(\mathrm{~s})=\frac{\mathrm{s}+1}{\mathrm{~s} \cdot(\mathrm{~s}+2)} \quad \mathrm{z}_{1}:=-1 \quad \mathrm{p}_{1}:=0 \quad \mathrm{p}_{2}:=-2 \quad \mathrm{H}(\mathrm{~s})=\frac{\mathrm{k} \cdot \frac{\mathrm{~s}+1}{\mathrm{~s} \cdot(\mathrm{~s}+2)}}{1+\mathrm{k} \cdot \frac{\mathrm{~s}+1}{\mathrm{~s} \cdot(\mathrm{~s}+2)}} \cdot \frac{\mathrm{s} \cdot(\mathrm{~s}+2)}{\mathrm{s} \cdot(\mathrm{~s}+2)} \\
\text { denominator: }=
\end{gathered}
$$

Plot points by hand label each point with k value
$\mathrm{s}_{1}(\mathrm{k}):=\frac{-(2+\mathrm{k})-\sqrt{(2+\mathrm{k})^{2}-4 \cdot \mathrm{k}}}{2}$
$\mathrm{k}:=0$
$\mathrm{s}_{1}(\mathrm{k})=-2$
$\mathrm{k}:=0.1$
$\mathrm{s}_{1}(\mathrm{k})=-2.051$
$\mathrm{k}:=0.2$
$\mathrm{s}_{1}(\mathrm{k})=$ \qquad
$\mathrm{k}:=0.5$
$\mathrm{s}_{1}(\mathrm{k})=-2.281$
$\mathrm{k}:=0.8$

$$
\mathrm{s}_{1}(\mathrm{k})=-2.477
$$

$\mathrm{k}:=1$

$$
\mathrm{s}_{1}(\mathrm{k})=-2.618
$$

$\mathrm{k}:=2$

$$
\mathrm{s}_{1}(\mathrm{k})=-3.414
$$

$$
\mathrm{s}_{1}(\mathrm{k})=-6.193
$$

\qquad
$\mathrm{k}:=10$

$$
\mathrm{s}_{1}(\mathrm{k})=
$$

$\mathrm{s}_{1}(\mathrm{k})=-101.01$
-

Homework RL1
p. 1

$$
\begin{aligned}
& \mathrm{G}(\mathrm{~s})=\frac{1}{\mathrm{~s} \cdot(\mathrm{~s}+2)} \quad \mathrm{p}_{1}:=0 \quad \mathrm{p}_{2}:=-2 \\
& \mathrm{~s}_{1}(\mathrm{k}):=\frac{-2-\sqrt{2^{2}-4 \cdot k}}{2} \quad \mathrm{~s}_{2}(\mathrm{k}):=\frac{-2+\sqrt{2^{2}-4 \cdot \mathrm{k}}}{2} \\
& \mathrm{k}:=0 \\
& \mathrm{~s}_{1}(\mathrm{k})= \\
& s_{2}(k)= \\
& \mathrm{k}:=0.1 \\
& \mathrm{~s}_{1}(\mathrm{k})=-1.949 \\
& \mathrm{~s}_{2}(\mathrm{k})=-0.051 \\
& \mathrm{k}:=0.2 \\
& \mathrm{~s}_{1}(\mathrm{k})= \\
& s_{2}(k)= \\
& \mathrm{k}:=0.5 \\
& \mathrm{~s}_{1}(\mathrm{k})=-1.707 \\
& \mathrm{k}:=0.8 \\
& \mathrm{~s}_{1}(\mathrm{k})=-1.447 \\
& \mathrm{~s}_{2}(\mathrm{k})=-0.293 \\
& \mathrm{k}:=1 \\
& \mathrm{~s}_{1}(\mathrm{k})= \\
& \mathrm{s}_{2}(\mathrm{k})=-0.553 \\
& \mathrm{k}:=2 \\
& \mathrm{~s}_{1}(\mathrm{k})=-1-\mathrm{j} \\
& \mathrm{k}:=5 \\
& \mathrm{~s}_{1}(\mathrm{k})=-1-2 \mathrm{j} \\
& \mathrm{k}:=10 \\
& \mathrm{~s}_{1}(\mathrm{k})= \\
& \mathrm{s}_{2}(\mathrm{k})= \\
& \mathrm{s}_{2}(\mathrm{k})=-1+9.95 \mathrm{j}
\end{aligned}
$$

Example 3 from p92 of text

$\mathrm{G}(\mathrm{s})=\frac{\mathrm{s}+2}{\mathrm{~s} \cdot(\mathrm{~s}+1)}$

$$
z_{1}:=-2
$$

$$
\mathrm{H}(\mathrm{~s})=\frac{\mathrm{k} \cdot(\mathrm{~s}+2)}{\mathrm{s} \cdot(\mathrm{~s}+1)+\mathrm{k} \cdot(\mathrm{~s}+2)}
$$

$$
\mathrm{p}_{1}:=0 \quad \mathrm{p}_{2}:=-1
$$

denominator: $\mathrm{s} \cdot(\mathrm{s}+1)+\mathrm{k} \cdot(\mathrm{s}+2)=0$

$$
\begin{aligned}
\mathrm{s}^{2}+\mathrm{s}+\mathrm{k} \cdot \mathrm{~s}+2 \cdot \mathrm{k} & =0 \\
\mathrm{~s}^{2}+(1+\mathrm{k}) \cdot \mathrm{s}+2 \cdot \mathrm{k} & =0
\end{aligned}
$$

$s_{1}(k)=$
$\mathrm{k}:=0$
$\mathrm{k}:=0.1$
$\mathrm{s}_{1}(\mathrm{k})=$ \qquad
$\mathrm{s}_{1}(\mathrm{k})=-0.87$
$\mathrm{k}:=0.17157$
$\mathrm{s}_{1}(\mathrm{k})=-0.588$
$\mathrm{k}:=0.172$
$\mathrm{s}_{1}(\mathrm{k})=-0.586-0.025 \mathrm{j}$
$\mathrm{k}:=0.2$
$\mathrm{s}_{1}(\mathrm{k})=-0.6-0.2 \mathrm{j}$
$\mathrm{k}:=0.5$
$\mathrm{s}_{1}(\mathrm{k})=-0.75-0.661 \mathrm{j}$
$\mathrm{k}:=0.8$
$\mathrm{s}_{1}(\mathrm{k})=-0.9-0.889 \mathrm{j}$
$\mathrm{k}:=1$
$\mathrm{s}_{1}(\mathrm{k})=$ \qquad
$\mathrm{k}:=3$
$\mathrm{s}_{1}(\mathrm{k})=-2-1.414 \mathrm{j}$
$\mathrm{k}:=5$
$\mathrm{s}_{1}(\mathrm{k})=-3-\mathrm{j}$
$\mathrm{k}:=5.827$
$\mathrm{s}_{1}(\mathrm{k})=-3.414-0.045 \mathrm{j}$
$\mathrm{k}:=7$
$\mathrm{s}_{1}(\mathrm{k})=-5.414$
$\mathrm{k}:=10$
$\mathrm{s}_{1}(\mathrm{k})=-8.702$
$\mathrm{k}:=100$
$\mathrm{s}_{1}(\mathrm{k})=-98.979$
$\mathrm{s}_{2}(\mathrm{k})=$

$$
\begin{aligned}
& s_{2}(k)= \\
& s_{2}(k)=-0.23 \\
& s_{2}(k)=-0.584 \\
& s_{2}(k)=-0.586+0.025 j \\
& s_{2}(k)=-0.6+0.2 j \\
& s_{2}(k)=-0.75+0.661 j \\
& s_{2}(k)=-0.9+0.889 j \\
& s_{2}(k)= \\
& s_{2}(k)=-2+1.414 j \\
& s_{2}(k)=-3+j \\
& s_{2}(k)=-3.414+0.045 j \\
& s_{2}(k)=-2.586 \\
& s_{2}(k)=-2.298 \\
& s_{2}(k)=-2.021
\end{aligned}
$$

Plot points by hand below

ECE 3510 Root-Locus Plots

$\mathrm{G}(\mathrm{s})=\frac{\mathrm{N}_{\mathrm{G}}}{\mathrm{D}_{\mathrm{G}}} \quad \begin{gathered}\text { the Open-Loop (O-L) } \\ \text { transfer function }\end{gathered} \xrightarrow[+\infty]{+\pi} \longrightarrow \mathrm{k} \cdot \mathrm{G}(\mathrm{s}) \longrightarrow$

The poles of the C-L transfer function solve: $1+\mathrm{k} \cdot \mathrm{G}(\mathrm{s})=0$
Any s that makes $\underline{\mathrm{G}(\mathrm{s})}=180^{\circ}$ will work for some k and be a part of the Root Locus.

The Rules ($k>1$)

1. Root-locus plots are symmetric about the real axis.
2. On the real axis, spaces left of an odd number of O-L poles and zeros are always part of the locus.
(Essentially, every other space on the real axis (counting leftward) is part of the plot.)
3. Each O-L pole originates $(\mathrm{k}=0)$ one branch.

Each O-L zero terminates $(\mathrm{k}=\infty)$ one branch.
All remaining branches go to ∞, one per asymptote. ($\mathrm{n}-\mathrm{m}$)
They each approach their asymptotes as they go to ∞.
4. The origin of the asymptotes is the centroid.

(\# poles - \# zeros)
5. The angles of the asymptotes are:

$$
\mathrm{i} \cdot \frac{180}{\mathrm{n}-\mathrm{m}}
$$

where $i=1,3,5,7,9, \ldots$ full circle
Or figure for half circle and mirror around the real axis.
6. The angles of departure (and arrival) of the locus are almost always:
$\xrightarrow[N]{N}$

OR:

Only multiple poles result in different departure angles: (or zeros)
triple poles:

Check real-axis rule, above

Quadruple poles:

OR:

Check real-axis rule, above

Multiple zeros attract branches from these same angles
Good guesses: Draw your break-outs midway between poles, and your break-ins midway between zeroes. Draw circles centered approximately midway between poles and zeroes.

ECE 3510 Root-Locus Plots Additional Rules

7. Breakaway points from the real axis $\left(\sigma_{\mathrm{b}}\right)$ are the solutions to: $\quad \frac{\mathrm{d}}{\mathrm{ds}} \mathrm{G}(\mathrm{s})=0$
(and arrival) The breakaway points are also solutions to: $\quad \sum_{\text {all }} \frac{1}{\left(s+-p_{i}\right)}=\sum_{\text {all }} \frac{1}{\left(s+-z_{i}\right)}$

IE: $\quad \frac{1}{\left(s+-p_{1}\right)}+\frac{1}{\left(s+-p_{2}\right)}+\frac{1}{\left(s+-p_{3}\right)}+\cdots=\frac{1}{\left(s+-z_{1}\right)}+\frac{1}{\left(s+-z_{2}\right)}+\frac{1}{\left(s+-z_{3}\right)}+\cdots$
Not all of these solutions will actually be breakaway points, some may be eliminated by the real-axis rule, and some may be arrival points. Both of these methods can be messy and result in high-order equations to solve. The second example will show an iterative way to deal with the complexity.
Example 1

$$
\begin{aligned}
G(s)=\frac{s+2}{s \cdot(s+1)} \quad \text { Solve: } \quad \frac{1}{s}+\frac{1}{s+1} & =\frac{1}{s+2} \\
\frac{(s+1)+s}{s \cdot(s+1)} & =\frac{1}{s+2}
\end{aligned}
$$

$$
(2 \cdot s+1) \cdot(s+2) \quad=\mathrm{s} \cdot(\mathrm{~s}+1) \quad \mathrm{s}^{2}+4 \cdot \mathrm{~s}+2 \quad=0 \quad \mathrm{~s}=-3.414 \quad \mathrm{~s}=-0.586
$$

Example 2 Iterative process, best shown by example: $\quad G(s)=\frac{1}{s \cdot(s+1) \cdot(s+3) \cdot(s+4)}$
Find the breakaway point between 0 and -1 .

$$
\text { Must solve: } \quad \frac{1}{s}+\frac{1}{(s+1)}+\frac{1}{(s+3)}+\frac{1}{(s+4)} \quad=0
$$

Guess $s=-0.4$ and use that for all the s's except those closest to the breakaway you want to find.

$$
\begin{array}{lll}
\text { Solve this instead: } & \frac{1}{\mathrm{~s}}+\frac{1}{(\mathrm{~s}+1)}+\frac{1}{(-0.4+3)}+\frac{1}{(-0.4+4)} & =0 \\
& \frac{1}{\mathrm{~s}}+\frac{1}{(\mathrm{~s}+1)}+\left(\frac{1}{2.6}+\frac{1}{3.6}\right) & =0 \\
\text { multiply by } \mathrm{s}(\mathrm{~s}+1): & \frac{\mathrm{s}+1}{1}+\frac{\mathrm{s}}{1}+\mathrm{s} \cdot(\mathrm{~s}+1) \cdot\left(\frac{1}{2.6}+\frac{1}{3.6}\right) & =0 \\
& \mathrm{~s}^{2}+4.0194 \cdot \mathrm{~s}+1.5097 & =0
\end{array}
$$

$$
\mathrm{s}=\frac{-4.0194+\sqrt{4.0194^{2}-4 \cdot 1.5097}}{2}=-0.419 \quad \text { Use this answer to try again }
$$

$$
\text { ignore the }-3.6 \text { solution for this answer. }
$$

$$
\begin{array}{ll}
\frac{1}{\mathrm{~s}}+\frac{1}{(\mathrm{~s}+1)}+\left(\frac{1}{2.581}+\frac{1}{3.581}\right) & =0 \\
\mathrm{~s}^{2}+4 \cdot \mathrm{~s}+1.5 & =0
\end{array}
$$

$$
\mathrm{s}=\frac{-4+\sqrt{4^{2}-4 \cdot 1.5}}{2}=-0.419
$$

No significant change, so this is the breakaway point

To find the breakaway point between -3 and -4 : Guess $\mathrm{s}=-3.6$

$$
\frac{1}{-3.6}+\frac{1}{(-3.6+1)}+\frac{1}{(s+3)}+\frac{1}{(s+4)}=0
$$

$$
\text { solve for } \mathrm{s}: \quad \mathrm{s}=-3.58 \quad \text { Not much change }
$$

Actually, it usually doesn't matter that much just where the breakaway points are.

ECE 3510 Root-Locus Plots p. 2

8. Gain at any point on the root locus: $k=-\frac{1}{G(s)}=\frac{1}{|G(s)|}=\frac{|\mathrm{D}(\mathrm{s})|}{|\mathrm{N}(\mathrm{s})|}$
9. Phase angle of $\mathrm{G}(\mathrm{s})$ at any point s on the root locus: $\quad \arg (\mathrm{G}(\mathrm{s}))=\arg (\mathrm{N}(\mathrm{s}))-\arg (\mathrm{D}(\mathrm{s}))= \pm 180^{\circ} \quad \pm 540^{\circ} \ldots$

Note: $\arg (\mathrm{x})$ is $\underline{/(\mathrm{x})} \quad$ Or: $\quad \arg \left(\frac{1}{\mathrm{G}(\mathrm{s})}\right)=\arg (\mathrm{D}(\mathrm{s}))-\arg (\mathrm{N}(\mathrm{s}))= \pm 180^{\circ} \quad \pm 540^{\circ} \ldots$ Or: $\quad \arg (-G(s))=0^{\circ} \quad \pm 360^{\circ} \ldots$

10. Gain at $\mathrm{j} \omega$ crossing: Use Routh-Hurwitz test.

OR: a) Get a rough s (say y) value from your plot,
b) Check it (evaluate the angle of $G(j y)$) and iterate using rule 9 ,
c) Find k using rule 8 .

Calculator example: $\quad G(s)=\frac{s+7}{s \cdot(s+2) \cdot(s+4)}$
Find the gain at $\mathrm{j} \omega$ crossing:
Let's assume that the root locus crosses the $\mathrm{j} \omega$ axis somewhere between
5 and 10 . I first try 5 , evaluating $\frac{1}{\mathrm{G}(5 \mathrm{j})}$ on my calculator
Note: I'm evaluating $1 / \mathrm{G}(\mathrm{s})$ so l'll end up with the gain value for free)
In a TI-86, I enter the following:
$5.000->S:((0, S) *(2, S) \star(4, S)) /((7, S)) \quad$ It returns: $\left(20.04 _174.00\right)$
Next I try:
$10.00->S:((0, S) *(2, S) *(4, S)) /((7, S)) \quad$ TI returns: $\quad(89.98$ I_-178.12)
The first was a positive angle, and this is negative, yep, the answer lies between these two.

The first was 6° under 180° and the second is 2° over, interpolate: $\quad 5+\frac{6}{6+2} \cdot 5=8.75$
Try: $8.75 \quad 8.750->S:((0, S) *(2, S) *(4, S)) /((7, \mathrm{~S})) \quad$ Tl returns: $(67.43$ - 178.78$)$

$$
8.75-\frac{180-178.78}{180-178.12} \cdot(10-8.75)=7.939
$$

Try: 7.9

$$
7.900->\mathrm{S}:((0, \mathrm{~S}) *(2, \mathrm{~S}) *(4, \mathrm{~S})) /((7, \mathrm{~S}))
$$

TI returns: (54.01 L-179.52)

$$
7.9-\frac{.48}{1.22} \cdot(8.75-7.9)=7.566
$$

Try: $7.5 \quad 7.500->S:((0, S) \star(2, S) \star(4, S)) /((7, S)) \quad$ Tl returns: (48.23 $\operatorname{l-}-179.97)$
$7.5-\frac{.03}{.48} \cdot(7.9-7.5)=7.475$
Try: 7.475
$7.475->S:((0, S) *(2, S) \star(4, S)) /((7, S))$
Tl returns: (47.88 /_179.99)
The root locus crosses at $\pm 7.475 \mathrm{j}$ and the gain is 48 .
$\mathrm{k}=48$

ECE 3510 Root-Locus Plots p. 4

11. Departure angle $\left(\theta_{\mathrm{D}}\right)$ from a complex pole (p_{c}).

Recall rule 9 (one of the most important rules):
for any point s on the root locus:

```
arg(G(s)) = arg(N(s))-\operatorname{arg}(D(s))= \pm180}\mp@subsup{}{}{\circ}\quad\pm36\mp@subsup{0}{}{\circ}
```

For multiple (r) poles:
Divide the circle into r divisions: $\frac{360 \cdot \mathrm{deg}}{\mathrm{r}}$ and rotate all by $\frac{{ }^{\theta} \mathrm{D}}{\mathrm{r}}$

Note: $\arg (x)$ is $/(x)$
Now imagine a point ε-distance away from the complex pole. That point would have an angle of θ_{D} with respect to the complex pole, but it's angle relative to all the other poles and zeros would be essentially the same as the comblex pole.
\sum (angle of point s relative to zero) $-\sum$ (angle of point s relative to pole) $-\theta_{\mathrm{D}}= \pm 180^{\circ} \quad \pm 540^{\circ} \ldots$
all zeroes
Example: $\mathrm{G}(\mathrm{s}):=\frac{\mathrm{s}+2}{(\mathrm{~s}+1) \cdot\left[(\mathrm{s}+3)^{2}+1^{2}\right]}$ all poles but p_{c}

Find the departure angle from the pole at: $\mathrm{p}_{\mathrm{c}}:=-3+1 \cdot \mathrm{j}$
$135-153.4-90-\theta_{\mathrm{D}}= \pm 180^{\circ} \quad \pm 540^{\circ} \ldots$
rearrange: $\quad \theta_{\mathrm{D}}=180-90-153.4+135=71.6 \mathrm{deg}$

Mathmatically:

$$
\theta_{\mathrm{D}}=180 \cdot \operatorname{deg}+\arg \left[\mathrm{G}\left(\mathrm{p}_{\mathrm{c}}\right) \cdot\left(\mathrm{s}+\mathrm{p}_{\mathrm{c}}\right)\right]
$$

The O-L phase angle computed at the complex pole, but ignoring the effect of that complex pole.
Our example: $\quad \theta_{D}=180 \cdot \operatorname{deg}+\arg \left[\frac{p_{c}+2}{\left(p_{c}+1\right) \cdot\left(p_{c}+3+1 \cdot j\right)}\right]=71.6 \cdot \operatorname{deg}$
12. Arrival angle $\left(\theta_{A}\right)$ to complex zero $\left(z_{c}\right)$.

Exactlv the same idea.

Example: $\mathrm{G}(\mathrm{s}):=\frac{\mathrm{s}^{2}+1^{2}}{\mathrm{~s} \cdot(\mathrm{~s}+1)}=\frac{(\mathrm{s}-1 \cdot \mathrm{j}) \cdot(\mathrm{s}+1 \cdot \mathrm{j})}{\mathrm{s} \cdot(\mathrm{s}+1)} \quad$ Find the departure angle \quad from the pole at: $\mathrm{z}_{\mathrm{c}}:=1 \cdot \mathrm{j}$

$$
\begin{aligned}
& 90+\theta_{\mathrm{A}}-90-45= \pm 180^{\circ} \quad \pm 540^{\circ} \ldots \\
& \text { rearrange: } \quad \theta_{\mathrm{A}}=180-90+90+45=225 \mathrm{deg}
\end{aligned}
$$

Mathmatically: $\quad \theta_{\mathrm{A}}=180 \cdot \operatorname{deg}-\arg \left[\frac{\mathrm{G}\left(\mathrm{z}_{\mathrm{c}}\right)}{\left(\mathrm{s}+\mathrm{z}_{\mathrm{c}}\right)}\right]$
The O-L phase angle computed at the complex zero,
 but ignoring the effect of that complex zero.
Our example: $\theta_{\mathrm{A}}=180 \cdot \mathrm{deg}-\arg \left[\frac{1 \cdot \mathrm{j}+1 \cdot \mathrm{j}}{1 \cdot \mathrm{j} \cdot(1 \cdot \mathrm{j}+1)}\right]=225 \cdot \mathrm{deg}$

ECE 3510 Basic Root Locus Examples

Sketch (by hand) the root-locus plots for the following open-loop transfer functions:
For these hand sketches, just use the rules on the first page of the notes
Mention the rules used and show work.

1. $\mathbf{G}(\mathrm{s})=\frac{\mathrm{s}+6}{(\mathrm{~s}+1) \cdot(\mathrm{s}+10)}$

2. $\mathbf{G}(\mathrm{s})=\frac{20}{(\mathrm{~s}+2) \cdot(\mathrm{s}+10)}$

3. $\mathbf{G}(\mathrm{s})=\frac{1}{\mathrm{~s} \cdot(\mathrm{~s}+16.64) \cdot(\mathrm{s}+53.78)}$

Basic Root Locus Examples p1

Basic Root Locus Examples p2

4. $\mathbf{G}(s)=\frac{4 \cdot s+40}{s \cdot(s+2) \cdot(s+8) \cdot(s+4)}$
5. $\mathbf{G}(\mathrm{s})=\frac{3 \cdot \mathrm{~s}+18}{\mathrm{~s} \cdot(\mathrm{~s}+4) \cdot(\mathrm{s}+10)}$
$6 \mathbf{G}(\mathrm{~s})=\frac{\mathrm{s}+8}{(\mathrm{~s}+1) \cdot(\mathrm{s}+3)^{3}}$

Basic Root Locus Examples p3

7. $\mathbf{G}(\mathrm{s})=\frac{(\mathrm{s}+5) \cdot(\mathrm{s}+8)}{\mathrm{s}^{2}-6 \cdot \mathrm{~s}+13} \quad \mathrm{~m}:=2$

$$
\mathrm{n}-\mathrm{m}=0
$$

8. $\mathbf{G}(s)=\frac{1}{\left(s^{2}+4 \cdot s+13\right) \cdot(s+1) \cdot(s+5)}$
$\mathrm{m}:=0$
$\mathrm{n}:=4$

centroid:
$\sigma_{\mathrm{C}}=\frac{-2+-2+-1+-5}{4}=-2.5$
$\mathrm{n}-\mathrm{m}=4$
asymptotes:

Basic Root Locus Examples p4

$10 \mathbf{G}(\mathrm{~s})=\frac{\mathrm{s}+3}{(\mathrm{~s}+6)^{3} \cdot(\mathrm{~s}+12)}$
$\mathrm{m}:=1$

centroid:

$$
\sigma_{\mathrm{C}}=\frac{(3 \cdot(-6)+-12)--3}{3}=-9
$$

$11 \mathbf{G}(\mathrm{~s})=\frac{(\mathrm{s}+3) \cdot(\mathrm{s}+12)}{(\mathrm{s}+6)^{3}} \quad \mathrm{~m}:=2$

$$
\mathrm{n}-\mathrm{m}=1
$$

no asymptotes

$12 \mathbf{G}(\mathrm{~s})=\frac{(\mathrm{s}+3) \cdot(\mathrm{s}+12)^{2}}{(\mathrm{~s}+6)^{3}} \quad \mathrm{~m}:=3 \mathrm{n}:=3$
$\mathrm{n}-\mathrm{m}=0$
no asymptotes

1. Sketch (by hand) the root-locus plots for the following open-loop transfer functions:

Mention the rules used and show work.
a) $\frac{s+3}{s \cdot(s+6)}$
b) $\frac{4}{s \cdot(s+3)}$
c) $\frac{1}{s \cdot(s+2) \cdot(s+4)}$
d) $\frac{s+7}{s \cdot(s+2) \cdot(s+4)}$
e) $\frac{2 s+6}{s \cdot(s+2) \cdot(s+4)}$
f) $\frac{8}{(s+2)^{3}}$
2. Nise, Ch.8, problem 1 (Nise problems may be on the back of this page)

3. Nise, Ch.8, problem 2

Answers

2. a) No: Not symmetric; On real axis to left of an even number of poles and zeros

3rd ed. b) No: Given these OL poles \& zeros, centroid won't be left of left-most pole, so RL won't bend leftward
3rd ed. c) Yes d) Yes e) No: Not symmetric; Not on real axis to left of odd number of poles and/or zeros
f) Yes g) No: Not symmetric; real axis segment is not to the left of an odd number of poles h) Yes

Note: 4th, 5th, 6th ed. answer differences:
b) \& c) No: On real axis to left of an even number of poles and zeros. Both violate real-axis rule.
3. a)

