

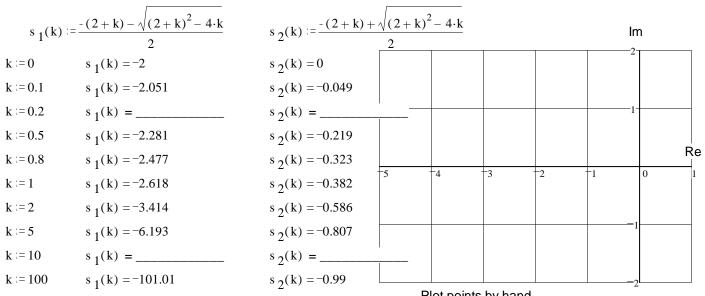
Example 2 from p. 91 of text

 $G(s) = \frac{s+1}{s \cdot (s+2)}$ $z_1 := -1$ $p_1 := 0$ $p_2 := -2$

$$= \frac{\mathbf{k} \cdot \frac{\mathbf{s} + 1}{\mathbf{s} \cdot (\mathbf{s} + 2)}}{1 + \mathbf{k} \cdot \frac{\mathbf{s} + 1}{\mathbf{s} \cdot (\mathbf{s} + 2)}} \cdot \frac{\mathbf{s} \cdot (\mathbf{s} + 2)}{\mathbf{s} \cdot (\mathbf{s} + 2)}$$

H(s)

b



ECE 3510 Homework RL1 p.1

Plot points by hand

ECE 3510 Homework RL1 p.2 Example 3 from p92 of text

$$G(s) = \frac{s+2}{s \cdot (s+1)}$$
 $z_1 := -2$
 $p_1 := 0$ $p_2 := -1$ denomination

$$H(s) = \frac{k \cdot (s+2)}{s \cdot (s+1) + k \cdot (s+2)}$$

ominator: $s \cdot (s+1) + k \cdot (s+2) = 0$

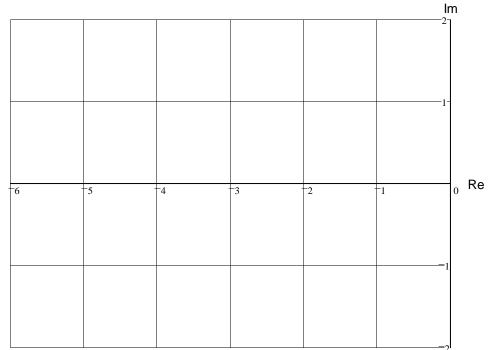
$$s^{2} + s + k \cdot s + 2 \cdot k = 0$$

 $s^{2} + (1 + k) \cdot s + 2 \cdot k = 0$

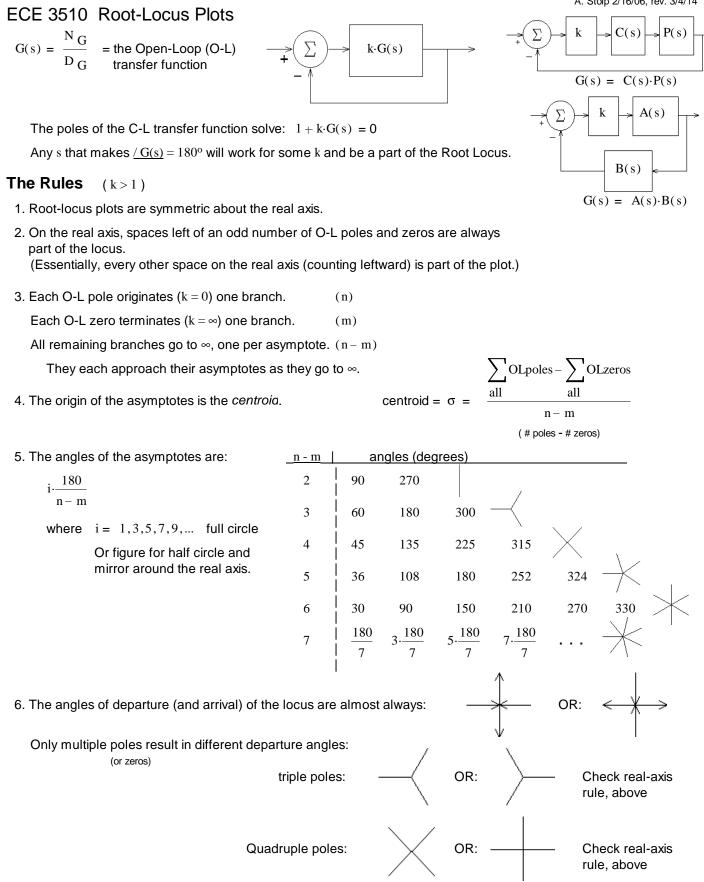
 $s_{1}(k) =$

 $s_2(k) =$

$\mathbf{k} := 0$	$s_1(k) =$	$s_2(k) =$	
k := 0.1	$s_{1}(k) = -0.87$	$s_2(k) = -0.23$	
k := 0.17157	$s_{1}(k) = -0.588$	$s_2(k) = -0.584$	
k := 0.172	s ₁ (k) = -0.586 - 0.025j	$s_2(k) = -0.586 + 0.025j$	
k := 0.2	$s_1(k) = -0.6 - 0.2j$	$s_2(k) = -0.6 + 0.2j$	
k := 0.5	s ₁ (k) = -0.75 - 0.661j	$s_2(k) = -0.75 + 0.661j$	
k := 0.8	s ₁ (k) = -0.9 - 0.889j	$s_2(k) = -0.9 + 0.889j$	
k := 1	$s_{1}(k) = $	s ₂ (k) =	
k := 3	$s_1(k) = -2 - 1.414j$	$s_2(k) = -2 + 1.414j$	
k := 5	$s_{1}(k) = -3 - j$	$s_2(k) = -3 + j$	
k := 5.827	s ₁ (k) = -3.414 - 0.045j	$s_2(k) = -3.414 + 0.045j$	
k := 7	$s_{1}(k) = -5.414$	$s_2(k) = -2.586$	
k := 10	$s_1(k) = -8.702$	$s_2(k) = -2.298$	
k := 100	s ₁ (k) = -98.979	$s_2(k) = -2.021$	Plot points by hand below



A. Stolp 2/16/06, rev. 3/4/14



Multiple zeros attract branches from these same angles

Good guesses: Draw your break-outs midway between poles, and your break-ins midway between zeroes. Draw circles centered approximately midway between poles and zeroes.

ECE 3510 Root-Locus Plots Additional Rules

7. Breakaway points from the real axis (σ_b) are the solutions to: $\frac{d}{ds}G(s) = 0$ (and arrival)

The breakaway points are also solutions to:
$$\sum_{all} \frac{1}{(s+p_i)} = \sum_{all} \frac{1}{(s+z_i)}$$
$$= \frac{1}{(s+z_i)}$$
$$IE: \qquad \frac{1}{(s+p_1)} + \frac{1}{(s+p_2)} + \frac{1}{(s+p_3)} + \dots = \frac{1}{(s+z_1)} + \frac{1}{(s+z_2)} + \frac{1}{(s+z_3)} + \dots$$

Not all of these solutions will actually be breakaway points, some may be eliminated by the real-axis rule, and some may be arrival points. Both of these methods can be messy and result in high-order equations to solve. The second example will show an iterative way to deal with the complexity.

Example 1

$$G(s) = \frac{s+2}{s \cdot (s+1)}$$
Solve: $\frac{1}{s} + \frac{1}{s+1} = \frac{1}{s+2}$

$$\frac{(s+1)+s}{s \cdot (s+1)} = \frac{1}{s+2}$$

$$(2 \cdot s+1) \cdot (s+2) = s \cdot (s+1)$$

$$s^{2} + 4 \cdot s+2 = 0$$

$$s = -3.414$$

$$s = -0.586$$

 $G(s) = \frac{1}{s \cdot (s+1) \cdot (s+3) \cdot (s+4)}$

Example 2 Iterative process, best shown by example:

Find the breakaway point between 0 and -1.

Must solve:

$$\frac{1}{s} + \frac{1}{(s+1)} + \frac{1}{(s+3)} + \frac{1}{(s+4)} = 0$$

Guess s = -0.4 and use that for all the s's except those closest to the breakaway you want to find.

Solve this instead:

$$\frac{1}{s} + \frac{1}{(s+1)} + \frac{1}{(-0.4+3)} + \frac{1}{(-0.4+4)} = 0$$

$$\frac{1}{s} + \frac{1}{(s+1)} + \left(\frac{1}{2.6} + \frac{1}{3.6}\right) = 0$$
multiply by s(s + 1):

$$\frac{s+1}{1} + \frac{s}{1} + s \cdot (s+1) \cdot \left(\frac{1}{2.6} + \frac{1}{3.6}\right) = 0$$

$$s^{2} + 4.0194 \cdot s + 1.5097 = 0$$

$$s = -\frac{4.0194 + \sqrt{4.0194^{2} - 4 \cdot 1.5097}}{2} = -0.419$$
ignor

$$\frac{1}{s} + \frac{1}{(s+1)} + \left(\frac{1}{2.581} + \frac{1}{3.581}\right) = 0$$

$$s^{2} + 4 \cdot s + 1.5 = 0$$

$$s = -\frac{4 + \sqrt{4^{2} - 4 \cdot 1.5}}{2} = -0.419$$
No significients of this is is the set of the s

Use this answer to try again

-3

-1

gnore the -3.6 solution for this answer.

No significant change, so this is the breakaway point

To find the breakaway point between -3 and -4: Guess s = -3.6

$$\frac{1}{-3.6} + \frac{1}{(-3.6+1)} + \frac{1}{(s+3)} + \frac{1}{(s+4)} =$$

solve for s: s = -3.58

Not much change, so this is the breakaway point

0

Actually, it usually doesn't matter that much just where the breakaway points are.

ECE 3510 Root-Locus Plots p.2

8. Gain at any point on the root locus:
$$k = \frac{1}{G(s)} = \frac{1}{G(s)} = \frac{D(s)}{N(s)}$$

9. Phase angle of G(s) at any point s on the root locus: $\arg(G(s)) = \arg(N(s)) - \arg(D(s))) = \frac{1}{180^{\circ}} \pm 540^{\circ} \dots$
Note: $\arg(q)$ is $\frac{1}{120}$ Or $\arg\left(\frac{1}{G(s)}\right) = \arg(N(s)) - \arg(N(s)) = \frac{1}{180^{\circ}} \pm 540^{\circ} \dots$
Or $\arg\left(-G(s)\right) = 0^{\circ} \pm 350^{\circ} \dots$
Or $\arg\left(-G(s)\right) = 0^{\circ} \pm 350^{\circ} \dots$
all zeroes all poles
10. Gain at jo crossing: Use Routh-Hurwitz test.
OR: a) Get a rough s (say y) value from your plot,
b) Check it (evaluate the angle of G(jy)) and iterate using rule 9,
c) Find k using rule 8.
Calculator example: $G(s) = \frac{s-7}{v(s-2)(s+4)}$
Find the gain at jo crossing:
Let's assume that the root locus crosses the joe axis somewhere between
S and 10. If rist try 5, evaluating $\frac{1}{G(s)}$ on my calculator
Note: I'm evaluating $J(G(s)$ so I'll end up with the gain value for free)
In a TI-86, I enter the following:
 $5.000-sS((0,S)/(2,S)/(4,S))/((7,S))$ It returns: (20.04 ± 174.00)
Next Itry:
 $10.00-sS((0,S)/(2,S)/(4,S))/((7,S))$ It returns: (93.98 ± 178.12)
The first was 6° under 180° and the second is 2° over, interpolate: $5 - \frac{6}{6+2} - 5 = 8.75$
Try: 8.75 $8.750-sS((0,S)/(2,S)/(4,S))/((7,S))$ It returns: (67.43 ± 178.78)
 $8.75 - \frac{180-178.78}{180-178.78}((10-8.75)-7.939$
Try: 7.9 $7.900-sS((0,S)/(2,S)/(4,S))/((7,S))$ It returns: (47.88 ± 179.99)
Try: 7.475 $7.475-sS((0,S)/(2,S)/(4,S))/((7,S))$ It returns: (47.88 ± 179.99)
The root locus crosses at ± 7.475 and the gain is 4. $k = 48$

ECE 3510 Root-Locus Plots p.4

11. Departure angle (θ_D) from a complex pole (p_c) .

Recall rule 9 (one of the most important rules):

for any point s on the root locus:

$$arg(G(s)) = arg(N(s)) - arg(D(s)) = \pm 180^{\circ} \dots \pm 360^{\circ} \dots$$

Note: arg(x) is /(x)

Now imagine a point ϵ -distance away from the complex pole. That point would have an angle of θ_D with respect to the complex pole, but it's angle relative to all the other poles and zeros would be essentially the same as the complex pole.

$$\sum_{all zeroes} (angle of point s relative to zero) - \sum_{all poles but p_c} (angle of point s relative to pole) - \theta_D = \pm 180^{\circ} \pm 540^{\circ} \dots$$

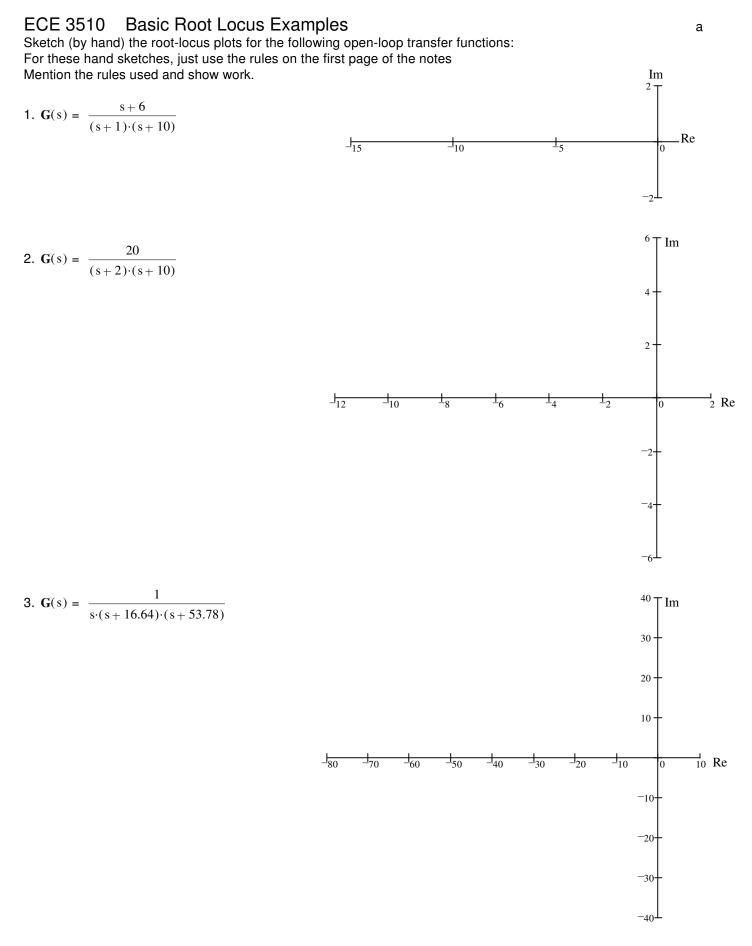
$$Example: G(s) := \frac{s+2}{(s+1)\cdot[(s+3)^2+1^2]} Find the departure angle from the pole at: p_c := .3 + 1:j$$

$$135 - 153.4 - 90 - \theta_D = \pm 180^{\circ} \pm 540^{\circ} \dots$$
rearrange: $\theta_D = 180 \cdot 90 - 153.4 + 135 = 71.6 \text{ deg}$
Mathmatically: $\theta_D = 180 \cdot \deg + \arg[G(p_c) \cdot (s+p_c)]$
The 0-L phase angle computed at the complex pole.
Our example: $\theta_D = 180 \cdot \deg + \arg[\frac{p_c + 2}{(p_c + 1) \cdot (p_c + 3 + 1:j)}] = 71.6 \cdot \deg$
Example: $G(s) := \frac{s^2 + 1^2}{s(s+1)} = \frac{(s-1\cdot j) \cdot (s+1\cdot j)}{s(s+1)} Find the departure angle from the pole at: $z_c := 1\cdot j$

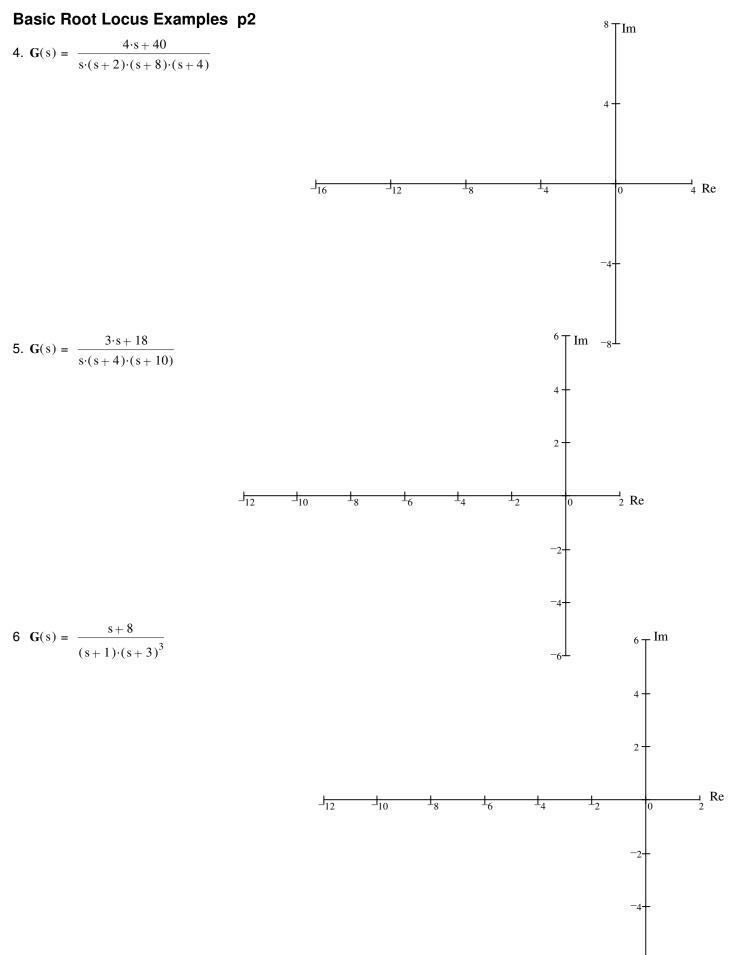
$$g0 + \theta_A - 90 - 45 = \pm 180^{\circ} \pm 540^{\circ} \dots$$
rearrange: $\theta_A = 180 \cdot 90 + 90 + 45 = 225 \cdot \deg$
Mathmatically: $\theta_A = 180 \cdot \deg - \arg[\frac{G(z_c)}{(s+z_c)}]$
The 0-L phase angle computed at the complex zero, but ignoring the effect of that complex zero.
Our example: $\theta_A = 180 \cdot \deg - \arg[\frac{G(z_c)}{(s+z_c)}]$
The 0-L phase angle computed at the complex zero.
Our example: $\theta_A = 180 \cdot \deg - \arg[\frac{G(z_c)}{(s+z_c)}]$$

For multiple (r) poles: Divide the circle into r divisions: $\frac{360 \cdot \text{deg}}{r}$ and rotate all by $\frac{\theta}{r}$

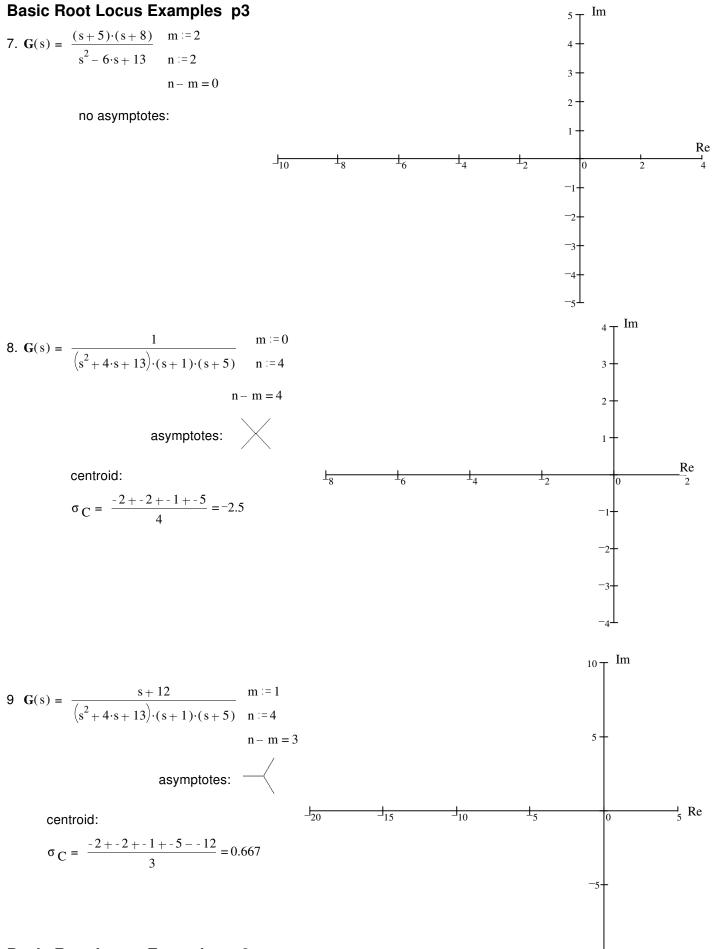
ECE 3510 Root-Locus Plots p.4



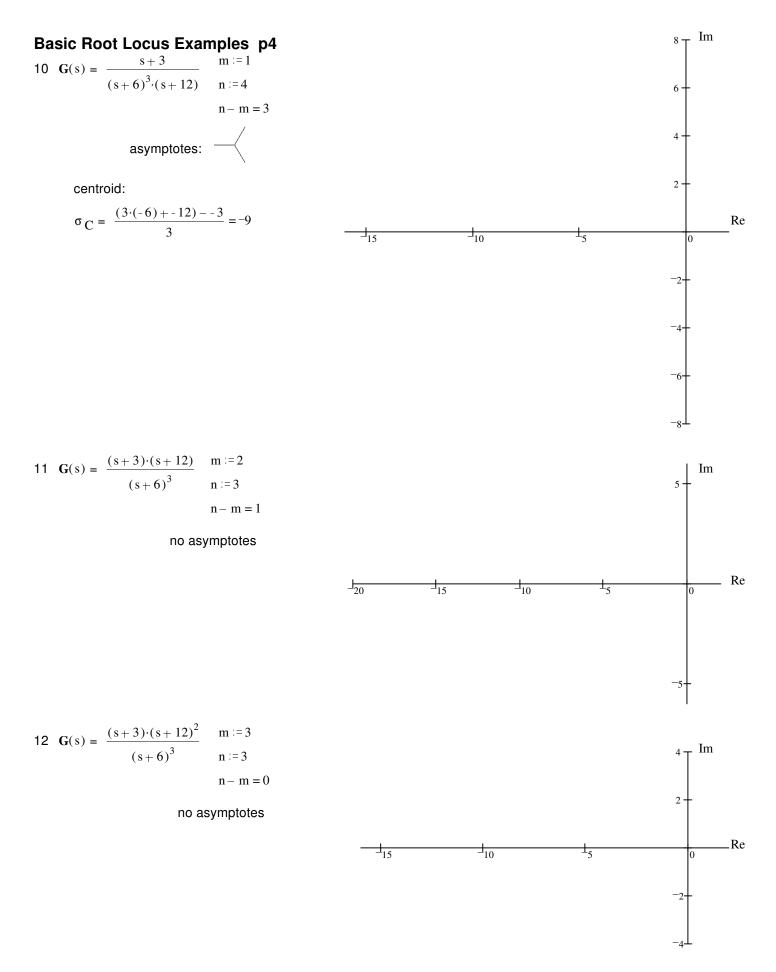
Basic Root Locus Examples p1



Basic Root Locus Examples p2



Basic Root Locus Examples p3

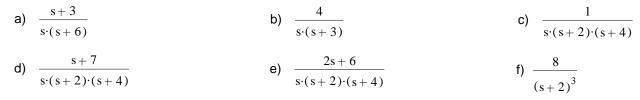


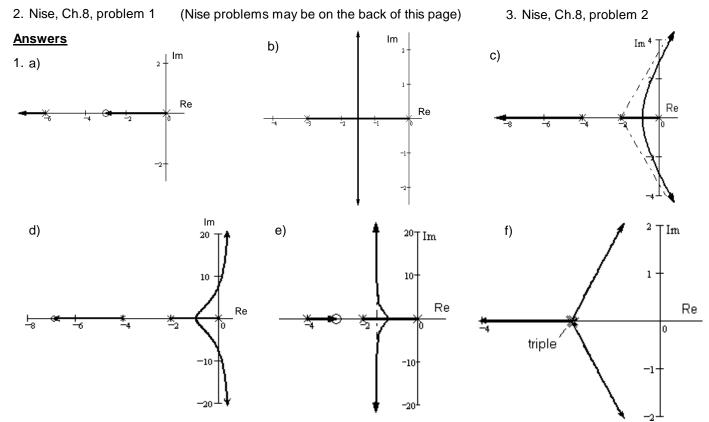
Basic Root Locus Examples p4

ECE 3510 homework RL2

Due: Wed, 10/5/22

1. Sketch (by hand) the root-locus plots for the following open-loop transfer functions: Mention the rules used and show work.





2. a) No: Not symmetric; On real axis to left of an even number of poles and zeros
3rd ed. b) No: Given these OL poles & zeros, centroid won't be left of left-most pole, so RL won't bend leftward
3rd ed. c) Yes d) Yes e) No: Not symmetric; Not on real axis to left of odd number of poles and/or zeros
f) Yes g) No: Not symmetric; real axis segment is not to the left of an odd number of poles h) Yes
Note: 4th, 5th, 6th ed. answer differences:

b) & c) No: On real axis to left of an even number of poles and zeros. Both violate real-axis rule.

