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ECE 3510       Finish Ch 2
Non-strictly-proper transforms section 2.2.5, p.16 in Bodson text

What if the order of the numerator is equal to or even greater than the order of the denominator? m n ?

m 2
Example: F( )s =

.2 s2 100

s2 .8 s 41 n 2

First divide, before partial fraction expansion s2 .8 s 41 .2 s2 .0 s 100

"remainder"

F( )s =
.2 s2 100

s2 .8 s 41
=

f(t) =

Delta functions are not very common in real life.

Non-strictly-proper transforms are just as common.

Properties of Signals Can you tell what f(t) must be just by looking at F(s)?   YES, somewhat...

s 5

..s s2 .4 s 13 ( )s 10

s 5

..s s2 64 ( )s 10

s 5

..s s2 .4 s 13 ( )s 10

s 5

..s s2 .4 s 13
2

( )s 10

s 5

..s3 s2 .4 s 13
2

( )s 10 2
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ECE 3510    Lecture 6 & 7 notes   Transfer Functions & Systems
Now that we've reviewed Laplace transforms of signals, we can move on to systems, the transfer 
function, and system block diagrams using blocks which contain transfer functions.

Consider a circuit:
L 1 R

H( )s =
V o( )s

V in( )s
=

R .L 2 s

R .L 1 s .L 2 s
=

R .L 2 s

R .L 1 L 2 sL 2

=
.L 2 s R

.L 1 L 2 s R

This could be represented in as a block operator:

V in( )s
.L 2 s R

.L 1 L 2 s R
V o( )s = .V in( )s H( )s

Transfer functions can be written for all kinds of devices and systems, not just electric circuits and the input and 
output do not have to be similar.  For instance, the potentiometers used to measure angular position in the crude 
servo of lab 1 can be represented like this:

θθθθ in( )s Kp = =.0.8
V

rad
0.014

V

deg
V out( )s = .K p θθθθ in( )s

In general:

H( )s =
output

input
=

Y( )s

X( )s
X( )s H( )s Y( )s = .X( )s H( )s

= .
N X( )s

D X( )s

N H( )s

D H( )sX and Y could be anything from 
small electrical signals to powerful 
mechanical motions or forces. The output signal has the 

poles of both the input AND 
the transfer function.

Serial - path systems Two blocks with transfer functions A(s) and B(s) in a row would look like this:

.X( )s A( )s
X( )s A( )s B( )s Y( )s = ..X( )s A( )s B( )s

= ..X( )s
N A( )s

D A( )s

N B( )s

D B( )s

The two blocks could be 
replaced by a single 
equivalent block:

X( )s .A( )s B( )s Y( )s = ..X( )s A( )s B( )s

The output signal has the 
poles of the input AND BOTH 
transfer functions.
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ECE 3510    Lecture 6 & 7 notes  p2
Summer blocks can be used to add signals:

OR+ +
X 1( )s X 1( )s X 2( )s X 1( )s X 1( )s X 2( )s

+ +

X 2( )s X 2( )s

or subtract signals:

OR+ +
X 1( )s X 1( )s X 2( )s X 1( )s X 1( )s X 2( )s

_ _

X 2( )s X 2( )s

Parallel - path systems

.X( )s A( )s
A( )s

Y( )s = .X( )s ( )A( )s B( )s
X( )s

B( )s = .X( )s
N A( )s

D A( )s

N B( )s

D B( )s.X( )s B( )s

= .X( )s
.N A( )s D B( )s .D A( )s N B( )s

.D A( )s D B( )s

Again, the output signal has 
the poles of the input AND 
BOTH transfer functions.

X( )s
.N A( )s D B( )s .D A( )s N B( )s

.D A( )s D B( )s
Y( )s

The two blocks could be 
replaced by a single 
equivalent block:

A feedback loop system is particularly interesting and useful:

+
X( )s A( )s Y( )s

+

B( )s

ECE 3510    Lecture 6 & 7 notes  p2



ECE 3510    Lecture 6 & 7 notes  p3
The entire loop can be replaced by a single equivalent block:

Note that I've begun to drop the (s)

+ X .B Y
X( )s A( )s Y( )s = .A ( )X .B Y

+ = .A X ..A B Y

Y ..A B Y = .A X.B Y
B( )s .Y ( )1 .A B = .A X

Y

X
=

A

1 .A B
= H( )s

The equivalent 
transfer function

X( )s
A( )s

1 .A( )s B( )s
Y( )s

.A( )s B( )s is called the "loop gain" or "open loop gain"

Negative feedback is more common and is used as a control system:

X .B Y+
error

X( )s A( )s Y( )s = .A ( )X .B Y

_
= .A X ..A B Y

Y ..A B Y = .A X
.B Y

B( )s .Y ( )1 .A B = .A X

Y

X
=

A

1 .A B
= H( )s

The equivalent 
transfer function

X( )s
A( )s

1 .A( )s B( )s
Y( )s

This is called a "closed loop" system, whereas a a system without feedback is called "open loop".  
The term "open loop" is often used to describe a system that is out of control.

The output signal poles are different than either the poles of the input or the transfer functions.
Different poles means different characteristics!  This implies that you might start with a stable system and make an 
unstable system or (more productively) start with an unstable system and make a stable system.
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ECE 3510    Lecture 6 & 7 notes  p4

The servo used in our lab can be represented by: 

Input position 
Potentiometer Circuit Gain Motor and Gears

θθθθ in θθθθ out+
K p G

K T

.s ..J L a s2 ..J R a
.B m L a s .B m R a

.K T K V

_

K p = .0.7
V

rad K p
Potentiometer constant

Motor Position Potentiometer

H( )s =
θθθθ out( )s

θθθθ in( )s
=

..G K T K p

.s ..J L a s2 ..J R a
.B m L a s .B m R a

.K T K V
..K p G K T

 See the appendix to lab 1 for the complete analysis

Ex. 1 a) A feedback system is shown in the figure.  What is the transfer function of the whole system, with 
feedback.

+
X( )s 10 3

K

s 2
Y( )s

_
H( )s =

Y( )s

X( )s
=  ?

Simplify your expression for H(s) so that 
the  denominator is a simple polynomial. 

1

8 s 3

Feedback loop:

Loop gain: L = .
.3 K

s 2

.1 3

8 s

Simplification: A f =

.3 K

s 2

1 .
.3 K

s 2

3

8 s

A f = .

.3 K

s 2

1 .
.3 K

s 2

3

8 s

.( )s 2 ( )8 s

.( )s 2 ( )8 s
=

.( ).3 K ( )s 8
.( )s 2 ( )8 s .( ).3 K 3

=
.( ).3 K s .K 24

s2 .10 s 16 .9 K

Whole system:
H( )s = .10

..3 K s .24 K

s2 .10 s 16 .9 K
=

..30 K ( )s 8

s2 .10 s 16 .9 K
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ECE 3510    Lecture 7 Examples  p5
b) Find the value of K to make the transfer function critically damped.  Answer may be left as a fraction.

characteristic eq.: 0 = s2 .10 s 16 .9 K

at critical damping, the part under the radical is zero.
to solve for the poles: s =

10 102 .4 ( )16 .9 K

2

thus: 102 = .4 ( )16 .9 K

100 = 64 .36 K

K =
100 64

36
= =

36

36
1 solve for K 

c) If K is less than the value found in part b), will the system be under-, critical-, or overdamped?

102 .4 ( )16 .9 K > 0 so it will be overdamped

d) If K 5, find the pole(s) of the transfer function:

characteristic eq.: 0 = s2 .10 s 16 .9 K = s2 .10 s 61

=
10 102 .4 61

2
5 +6j =

10 102 .4 61

2
5 6j

e) If K 5, find the zero(s) of the transfer function: s 8 = 0 s = 8

Ex.2 a) Find the transfer function of the circuit shown. Consider IC as the "output". R 1

Properly simplify all your expressions for H(s).  By this I mean that 
he numerator and denominator should both be simple polynomials or 
factored polynomials.  There should be no 1/sn terms in either the 
numerator or denominator.  Also, there should be no coefficient on 
the highest-order term in the denominator

"output"
I CR 2

I in

H( )s =
I C( )s

I in( )s
= ?

C
Current divider:

L

I C( )s = .I in( )s

1

1
.C s

1

1
.C s

1

R 2
.L s

= .I in( )s
.C s

.C s
1

R 2
.L s

H( )s =
I C( )s

I in( )s
= .

.C s

.C s
1

R 2
.L s

R 2
.L s

R 2
.L s

= .
.C R 2

..L C s2

..C R 2 s ..L C s2 1

1
.L C

1
.L C

=

.
R 2

L
s s2

.
R 2

L
s s2 1

.L C

=

.s s
R 2

L

s2 .
R 2

L
s

1
.L C

b) How many zeroes does this transfer function have? 2 , 0 and -R2/L

c) How many poles does this transfer function have? 2 at:
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ECE 3510    Lecture 7 Examples  p6
Ex.3 a) Find the transfer function of the circuit shown. 

Vi is the input and VO is the output.
R 1 L

C
V i V oR 2

H( )s =
V o( )s

V i( )s
=

1

1

R 2

.C s

R 1
.L s

1

1

R 2

.C s

1

R 2

.C s

1

R 2

.C s
=

1

.R 1
1

R 2

.C s ..L s
1

R 2

.C s 1

=
1

R 1

R 2

..R 1 C s
.L s

R 2

...L s C s 1

1
.L C

1
.L C

=

1
.L C

.
R 1

R 2

1
.L C

.
.R 1 C

.L C
s .

.L s

R 2

1
.L C

s2 1
.L C

=

1
.L C

s2 .
R 1

L

1
.R 2 C

s .1
R 1

R 2

1
.L C

b) Find the characteristic equation of the circuit shown. 0 = s2 .
R 1

L

1
.R 2 C

s .1
R 1

R 2

1
.L C

c) The solutions to the characteristic equation are called the               of the transfer function. Poles

d) Does the transfer function have one or more zeros?  If yes, express it (them) in terms of R1, R2, C, & L. NO

General Interconnected 
System

2

X( )s
1

s

1

s 6
Y( )sΣ 3 Σ

X 1

create a new variable 
after each summer

4
X 1 = X ..2

1

s
X 1

..1

s

1

s 6
X 1

.X 1 1
2

s

1
.s ( )s 6

= X = .X 1
.s ( )s 6
.s ( )s 6

.2 ( )s 6
.s ( )s 6

1
.s ( )s 6

= .X 1
s2 .8 s 11

.s ( )s 6

X 1 = .
.s ( )s 6

s2 .8 s 11
X

Y = ..3 .1

s

1

s 6
X 1

..4
1

s
X 1 = ..3

1
.s ( )s 6

.
.s ( )s 6

s2 .8 s 11
X ..4

1

s
.

.s ( )s 6

s2 .8 s 11
X

= .3 ( ).4 s 24

s2 .8 s 11
X = .

.4 s 27

s2 .8 s 11
X

H( )s =
Y

X
=

.4 s 27

s2 .8 s 11
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General Interconnected System, Another approach ECE 3510    Lect 7 Ex  p7

2

X( )s
1

s

1

s 6
Y( )sΣ 3 Σ

X 1
/

X 2

s 6X 2
.4 X 2

4

move a connection
2

X( )s
1

s

1

s 6
Y( )sΣ 3 Σ

X 2 /

X 2

s 61

s 2inner loop

1

s

1 .2
1

s

= .( )s 6 4 .4 X 2

parallel paths 3 .4 ( )s 6

outer loop

.1

( )s 2

1

( )s 6

1 ..1
1

( )s 2

1

( )s 6

=
1

.( )s 2 ( )s 6 1
=

1

s2 .8 s 12 1

=
1

s2 .8 s 11

whole transfer function H( )s = .1

s2 .8 s 11
( )3 .4 ( )s 6 =

.4 s 27

s2 .8 s 11

Bounded-Input Bounded-Output (BIBO) Stable

A system is considered BIBO stable if the output in bounded for any bounded input.

A bounded input could have single poles on the imaginary axis at any location.  
A bounded output may not have double poles on the imaginary axis or any poles in the RHP (Right-half-plane).
The output will have all the poles of the input plus all the poles of the system. (except in rare pole-zero cancellations.) 

Therefore: A BIBO system may not have any poles on the imaginary axis or any poles in the RHP.
Im

Examples of systems with poles on the imaginary axis:  If the output of a DC motor is 
angular position of the shaft then it has a pole at the origin.  The response to a DC input 
is a shaft that keeps turning and the position grows without bounds.  This system is not 
BIBO stable.  (If the output is shaft speed, then it would be BIBO stable.)

 all poles 
  in LHP

s-plane

Re

<-- NOT 
  on Im axisIf a system has a pair of imaginary poles at + jω, then it has a resonant frequency of ω.

If the input also had a pair of imaginary poles at + jω then it would excite that resonance 
and the output would grow without bounds.  

system transfer function poles
ECE 3510    Lecture 7 Examples  p7



A Stolp
1/22/15ECE 3510  BIBO  System  Responses to an Impulse or a Step input

Impulse  Response
The Impulse response of a system is the output when the input is an impulse (delta function).

The simplest possible input: X( )s = 1

Input is an impulse

X( )s = 1 H( )s output = "impulse response"

( The response of the system to an impulse)

Y( )s = .X( )s H( )s = .1 H( )s = H( )s

A signal who's transform is 
the system's transfer function

Of course, an impulse is a little impractical in real life.  
But, if you can approximate one, than you may be able to use it to characterize an unknown system.

Sometimes the term "impulse response" is used in place of the term "transfer function"

Step Responses

The step response of a system is the output when the input is a step (DC which starts at time-zero).

Step input

Im
time-domain

s-plane

X m DC Re
pole is at 0

time
x( )t = .X m u( )t X( )s = .X m

1

s

System Step Response

step input H( )s output = step response

y( )t y ss( )t y tr( )t
x( )t

X m =
t +

t t t
..X m H( )0 u( )t

H( )0 = DC Gain

Complete step response  =  steady-state response  +    transient response

ECE 3510  System Responses   p1



ECE 3510  System Responses   p2
Steady-State Response & DC Gain 

Y( )s = .X( )s H( )s = .
X m

s
H( )s

Complete step response

partial fraction expansion: Y( )s = .
X m

s
H( )s =

A

s
+

B

( )

C

( )

D

( )
+ ...

steady-
state 
response

+ transient response

multiply both sides by s .X m H( )s = A + .B

( )

C

( )

D

( )
s

set s 0 .X m H( )0 = A + .B

( )

C

( )

D

( )
0

Y ss( )s =
A

s
=

.X m H( )0

s
y ss( )t = ..X m H( )0 u( )t

H( )0 = DC Gain

The transient part would be found by finishing the partial-fraction expansion.

Step Response of First-Order Systems

H( )s =
k

s a
=

k

s
1

τ

Y( )s = .
X m

s

k

s a

y( )t = ..X m
k

a
.k

a
e

.a t u( )t (ignoring initial conditions)

a step plus an exponential curve  is the step response of a first-order system

1 0 1 2 3 4 5

1 0 1 2 3 4 5

1 0 1 2 3 4 5

.X m
k

a.X m
k

a y( )t

+ =

.X m
k

a
time constants, τ

All first-order systems have the same time-domain response:

y( )t = y( )∞ .( )y( )0 y( )∞ e

t

τ A simple example of a first-order system

y( )0 = the initial condition
R

y( )∞ = the final condition

C

v C( )t = v C( )∞ .v C( )0 v C( )∞ e

t

τ τ = .R C
ECE 3510  System Responses   p2



Exponential Curves

Let's take a closer look at some of the characteristics of exponential curves,  the output of stable first order 
system.  The transient effects always die out after some time, so the exponents are always negative.

Step response of: H( )s =
k

s
1

τ

0 1 2 3 4 5

98% 99%
Final
condition

95%

1 e

t

τ

63%

0%
Initial
condition

time

time constants, τ
Rising Exponential Curve

0 1 2 3 4 5

Initial
condition 100%

37%

e

t

τ

5%
2% 1%

Final
condition

time constants, τ
Decaying Exponential Curve

Some Important Features:
1) These curves proceed from an initial condition to a final condition.  If the final condition is greater than 
the initial, then the curve is said to be a "rising" exponential.  If the final condition is less than the initial, 
then the curve is called a "decaying" exponential.  

2) The curves' initial slope is + 1/τ.  Ιf they continued at this initial slope they'd reach the final condition in 
one time constant. 

3) In the first time constant the curve goes 63% from initial to the final condition.

4) By four time constants the curve is within 2% of the final condition and is usually considered finished.  
Mathematically, the curve approaches the final condition asymptotically and never reaches it.  In reality, of 
course, this is nonsense.  Whatever difference there may be between the mathematical solution and the 
final condition will soon be overshadowed by random fluctuations (called noise) in the real system.

ECE 3510  System Responses   p3 =e 4 0.018 < 2%



ECE 3510  System Responses   p4
Step Response of Second-Order Systems

Real poles (over and critically damped)
A first-order system for reference

H 1( )s =
k

s a
a 1 k a y 1( )t

k

a
.k

a
e

.a t

\
 normalization
/

to make curves below easier to compare
Second-order system, critically damped

H 2( )s =
k

( )s a 2
a 1 k a2 y 2( )t

k

a2
.k

a2
e

.a t ..k

a
t e

.a t

double pole on real axis

Second-order system, over damped

H 3( )s =
k
.s a 1 s a 2

a 1 a f 5 a 2
.f a 1 k .a 1 a 2 normalization

y 3( )t
k
.a 1 a 2

.k
.a 1 a 1 a 2

e
.a 1 t .k

.a 2 a 2 a 1
e

.a 2 t

0 1 2 3 4 5

y 1( )t

y 2( )t

y 3( )t

y 1 t 1
f

0.63

t

Final
condition

63%
y 3

y 1 (solid)
y 2

Initial
condition

time

time constants, τ
Rising Curves

Some Important Features:
1) The poles closest to the jω axis are the dominant poles.

2) Poles to the left of the dominant poles may introduce an effect that looks like time delay.

3) Conversely, the effects of a time delay (non-linear) can sometimes be modeled by an extra pole (linear) 
to the left of the dominant poles.
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Step Responses of Under-Damped 2nd order Systems  (Complex poles)

H( )s =
k

s2 ..2 a s a2 b2
= .k

ω n
2

ω n
2

s2 ...2 ζ ω n s ω n
2

ω n
2

= a2 b2 ω n = natural frequency

DC gain .ζ ω n = a

H( )0 =
k

a2 b2
=

k

ω n
2

ζ =
a

ω n

=
a

a2 b2

= damping factor

= cos( )θ

y( )t = ..x m H( )0 1 .e
.a t cos( ).b t ..a

b
e

.a t sin( ).b t ( curves below are normalized so H(0) = 1 )

Overshoot

0 1 2 3 4 5

%OS = ..100 % e
.a

b
π

1 e
.a t

1 1

1 e
.a t

0 0

Underdamped Curves ECE 3510  System Responses   p5
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Step Responses,  Effect of Zeroes ECE 3510  System Responses   p6

A first-order system for reference

H 1( )s =
k

s a
a 1 k a y 1( )t

k

a
.k

a
e

.a t

An overdamped system with a single zero

H( )s =
.k ( )s z

.s a 1 s a 2
Y( )s = .

X m

s

.k ( )s z
.s a 1 s a 2

k is normalized so the curves below will not reach the same final condition. 

z 1.6 k
.a 1 a 2

z
y 4( )t

.k z

.a 1 a 2

.
.k z a 1
.a 1 a 1 a 2

e
.a 1 t .

.k z a 2

.a 2 a 2 a 1
e

.a 2 t

z 1.2 k
.a 1 a 2

z
y 5( )t

.k z

.a 1 a 2

.
.k z a 1
.a 1 a 1 a 2

e
.a 1 t .

.k z a 2

.a 2 a 2 a 1
e

.a 2 t

z 0.8 k
.a 1 a 2

z
y 6( )t

.k z

.a 1 a 2

.
.k z a 1
.a 1 a 1 a 2

e
.a 1 t .

.k z a 2

.a 2 a 2 a 1
e

.a 2 t

z 0.6 k
.a 1 a 2

z
y 7( )t

.k z

.a 1 a 2

.
.k z a 1
.a 1 a 1 a 2

e
.a 1 t .

.k z a 2

.a 2 a 2 a 1
e

.a 2 t

z 1.6 k
.a 1 a 2

z
y 8( )t

.k z

.a 1 a 2

.
.k z a 1
.a 1 a 1 a 2

e
.a 1 t .

.k z a 2

.a 2 a 2 a 1
e

.a 2 t

0 1 2 3 4 5
0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y 1( )t

y 4( )t

y 5( )t

y 6( )t

y 7( )t

1

y 8( )t

t

z 0.6

z 0.8
Final
condition

z 1.2

z 1.6

z 1.6

time
Some Important Features: time constants, τ

1) The zero (z) is in the LHP if z is positive.

2) If the zero is closer to the origin than the poles, than it can cause overshoot and/or significant steady-state error.

Remember this one
3) The steady-state error will be 100% (no DC gain) if the zero is at the origin.  The zero is at the 
origin cancels the pole of the DC (step) input.  (The system has a differentiator.)

4) A zero in the RHP (non-minimum phase zero) can cause undershoot or a negative DC gain. 
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d
ECE 3510    homework  # 5 Due:  Wed, 9/14/22
1. Problem 3.2b, p.68 in Bodson text.

2. Problem 3.3 in Bodson text. As part of your work to reach a solution, draw the pole diagram for each. 

3. Find the transfer function H( )s =
V o( )s

V i( )s
for these circuits. Properly simplify all your expressions 

for H(s) like you did in HW 4.

a) b) R 1

C

L
V i V o L

R V i

C V oR 2

4. Find the step response of: H( )s =
k
.s a 1 s a 2

Step input: x( )t = .x m u( )t

X( )s =
x m

sShow the steps necessary to arrive at the steady-state and transient 
responses shown as equation(s) 3.37 on p.49 of the text.

5. Find the step response of: H( )s =
.k s

( )s a 2 b2
=

.k s

s2 ..2 s a a2 b2 where b is real

Show the steps necessary to arrive at the steady-state and transient responses.

6. For the transfer functions below, find the DC gain and the full step responses.  You may use the results found in 
section 3.3.2 of the text as well as problem 3, above.

a) H( )s =
2

s2 .2 s 1
b) H( )s =

s 2

s2 .2 s 2
Hint: Notice how easily this 
will split into two parts that 
you already have answers for.

Answers
Example of a 

1. 2. Stable Problem input
.H 1 H 4

.H 2 H 4
..H 1 H 2 H 3

.H 1 H 3

1 H 1
a) yes
b) no cos( ).2 t

3. a) b) c) yes
d) no any input, even noise

s2 .R

L
s

s2 .R

L
s

1
.L C

1
.L C

s2 .1
.C R 2

R 1

L
s .1

R 1

R 2

1
.L C

e) no 1
DC

f) no 1
u(t) is assumed

4. y( )∞ =
.x m k

.a 1 a 2
y tr( )t = .x m

.k
.a 1 a 1 a 2

e
.a 1 t .k

.a 2 a 2 a 1
e

.a 2 t

OR: y( )t = .x m
k
.a 1 a 2

.k
.a 1 a 1 a 2

e
.a 1 t .k

.a 2 a 2 a 1
e

.a 2 t

5. y( )∞ = 0 y tr( )t = ...x m
k

b
e

.a t sin( ).b t OR: y( )t = 0 ...x m
k

b
e

.a t sin( ).b t

6. a) .x m 2 .2 e t ..2 t e t b) .x m 1 .e t cos( )t ECE 3510    homework  # 5



ECE 3510    homework  # 6  Review of Steady-State AC Due:  Sat, 9/17/22 b

1. Convert the following complex numbers to polar form (m/θ or mejθ). a) 2.6 8.7j b) 3 4j c) 3 4j

2. Convert the following complex numbers to rectangular form (a + bj). a) .10 e
..j 60 deg b) .10 e

..j 45 deg c) .20 e
..j 120 deg

3. Add or subtract the complex numbers. a) ( )3 2j ( )6 9j b) ( )9 10j ( )9 10j

4. Multiply the complex numbers. a) ..20 e
..j 40 deg .10 e

..j 60 deg b) .( )2 j ( )6 9j

5. Divide the complex numbers. a)
.20 e

..j 40 deg

.10 e
..j 60 deg

b)
12 10j

6 9j

6. Add and subtract the sinusoidal voltages using phasors.  Draw a phasor diagram which shows all 4 phasors, 
and give your final answer in time domain form.

v 1( )t = ..1.5 V cos( ).ω t .10 deg v 2( )t = ..3.2 V cos( ).ω t .25 deg

a) Find v 3( )t = v 1( )t v 2( )t b) Find v 4( )t = v 1( )t v 2( )t

7. a) Find Zeq .
L .160 mH

V( )jω
C .0.03 µF

b) Find the current IL(jω). ..8 V ej0

R .4 kΩ
f .1.5 kHz

8. Find the steady-state magnitude and phase of each of the following transfer functions. H( ).j ω = ? / H(jω)  = ?

a) b)

ω .10
rad

sec
H( )s =

.40

sec
s

s2 .10

sec
s

200

sec2

f .50 Hz H( )s =

s
2 .1000

sec
s

s2 .300

sec
s

10000

sec2s = .j ω

9. Find the following outputs.  Express them in the time domain, first as a cosine with a phase angle 
and then as a sum of cosine and sine with no phase angles:  

a) The input x( )t = .3 cos( ).10 t is the input for the transfer function of 8a), above.

b) The input x( )t = .5 sin( )...2 π 50 t is the input for the transfer function of 8b), above.

remember, sine is -j

Answers

1. a) .9.08 e
..j 73.4 deg b) .5 e

..j 53.1 deg c) .5 e
..j 126.9 deg

2. a) 5 .8.66 j b) 7.071 .7.071 j c) 10 .17.321 j 3. a) 9 .11 j b) .20 j

4. a) .200 e
..j 100 deg b) .24.2 e

..j 82.9 deg 5. a) .2 e
..j 20 deg b) 1.385 .0.41 j

6. a) v 1( )t v 2( )t = ..4.67 cos( ).ω t .20.2 deg V b) v 1( )t v 2( )t = ..1.794 cos( ).ω t .142.5 deg V

7. a) .1.82 kΩ .15.2 deg b) .4.4 mA .15.2 deg

8. a) M = 2.828 .45 deg b) M = 2.544 .25.8 deg

9. a) y( )t = .8.484 cos ..10
rad

sec
t .45 deg = .6 cos ..10

rad

sec
t .6 sin ..10

rad

sec
t

b) y( )t = .12.72 cos( )...2 π 50 t .115.82 deg = .5.54 cos( )...2 π 50 t .11.45 sin( )...2 π 50 t

ECE 3510    homework  #  6




