Full Name:

Lab Section: _

ECE 3500 (Fall 2016) - Examples #3

Question #1:

(a) Sketch
$$x[n] = 3u(n-1) - 5u(n-3) + 2u(n-5)$$

(b) Sketch
$$y[n] = x[n+1]$$

(c) Sketch
$$z[n] = y[2n]$$

- (d) Write z[n] in terms of x[n].
- (e) Compute the energy of z[n].

Question #2: Consider the following system with input x(t) and output y(t),

$$y(t) = x(t)u(t)$$


(a) (2 pts) Sketch y(t) for $x(t) = e^{-t}$

(b) (3 pts) Is the system linear?

(c) (3 pts) Is the system time-invariant?

- (d) (2 pts) Is the system causal?
- (e) (2 pts) Is the system memoryless?

Question #3: Consider the following signal discrete-time signal x[n]. Assume the zeros continue forever for $n \to -\infty$ and $n \to \infty$.

(a) (3 pts) Express x[n] as a sum of weighted and delayed step functions, i.e. in the form

$$x[n] = \sum_{m=0}^{M} a_m u[n - d_m].$$

Question #4: Consider two signals defined by:

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - 2k)$$
 , $z(t) = x(t) + x(t/3) + x(t/2)$

(a) (2 pts) Sketch x(t)

- (b) (2 pts) Is x(t) periodic? If it is, compute its fundamental period.
- (c) (2 pts) Is z(t) periodic? If it is, compute its fundamental period.

Question #5: Consider the continuous-time system defined by the following input-output relationship

$$y(t) = \sum_{m=-1}^{2} mx(t-m)$$

(a) (3 pts) Sketch y(t) for the input x(t) = u(t)

(b) (2 pts) Is the system memoryless?

(c) (2 pts) Is the system causal?

(d) (3 pts) Is the system BIBO stable?