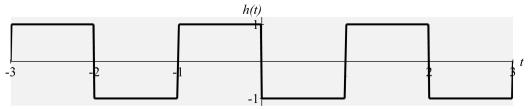
Full Name:		_ Lab Section:		
ECE 3500 (Fall 2015) – Class #10 Exan	nples	Date:	Sept.	24 2015
Question #1:				
(a) Compute the Fourier coefficients (for $x(t) = 2\cos(2\pi t)$.	r the complex expor	nential form of the l	Fourier S	eries) for
(b) Compute the complex Fourier coefficients for $x(t) = 3\sin(3\pi t) + 1$.	icients (for the com	plex exponential fo	rm of the	e Fourie
(c) Compute the complex Fourier coefficients for $x(t) = \cos(2\pi t) + \sin(3\pi t)$	`	plex exponential fo	rm of the	e Fourie
Series) for $x(t) = \cos(2\pi t) + \sin(9\pi t)$).			
(d) Compute the complex Fourier coefficients for $x(t) = \cos(2\pi t) + 2\sin(3\pi t)$		plex exponential fo	rm of the	e Fourie

Question #2:

(a) Compute the complex Fourier coefficients (for the complex exponential form of the Fourier Series) for the signal x(t) below. Assume the pattern continues for $-\infty < t < \infty$.



Full Name:

Lab Section:

ECE 3500 (Fall 2015) - Class #10 Examples

Date:

Sept. 24 2015

Question #1:

(a) Compute the Fourier coefficients (for the complex exponential form of the Fourier Series) for $x(t) = 2\cos(2\pi t)$.

Solution: $c_1 = 1$, $c_{-1} = 1$, and all other coefficients are 0

(b) Compute the complex Fourier coefficients (for the complex exponential form of the Fourier Series) for $x(t) = 3\sin(3\pi t) + 1$.

Solution: $c_0=1$, $c_1=\frac{3}{2j}=\frac{-3j}{2}$, $c_{-1}=-\frac{3}{2j}=\frac{3j}{2}$, and all other coefficients are 0

(c) Compute the complex Fourier coefficients (for the complex exponential form of the Fourier Series) for $x(t) = \cos(2\pi t) + \sin(3\pi t)$.

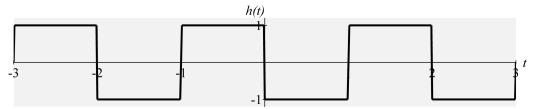
Solution: The fundamental angular frequency for this periodic signal is $\omega_0=\pi$. $c_2=\frac{1}{2},\ c_{-2}=\frac{1}{2},\ c_3=\frac{1}{2j}=\frac{-j}{2},\ c_{-3}=-\frac{1}{2j}=\frac{j}{2},$ and all other coefficients are 0

(d) Compute the complex Fourier coefficients (for the complex exponential form of the Fourier Series) for $x(t) = \cos(2\pi t) + 2\sin(3\pi t) + 3\cos((\pi/2)t)$.

Solution: The fundamental angular frequency for this periodic signal is $\omega_0=\pi/2$. $c_1=\frac{3}{2},\ c_{-1}=\frac{3}{2},\ c_4=\frac{1}{2},\ c_{-4}=\frac{1}{2},\ c_6=\frac{1}{j}=-j,\ c_{-6}=-\frac{1}{j}=j$, and all other coefficients are 0

Question #2:

(a) Compute the complex Fourier coefficients (for the complex exponential form of the Fourier Series) for the signal x(t) below. Assume the pattern continues for $-\infty < t < \infty$.



Solution: The fundamental period of this is $T_0=2$. Therefore, the angular frequency for this periodic signal is $\omega_0=\pi$.

$$c_{0} = \frac{1}{T_{0}} \int_{T_{0}} x(t)dt = 0$$

$$c_{k} = \frac{1}{T_{0}} \int_{T_{0}} x(t)e^{-jk\pi t}dt$$

$$= \frac{1}{2} \int_{-1}^{0} e^{-jk\pi t}dt - \int_{0}^{1} e^{-jk\pi t}dt$$

$$= \frac{1}{2} \left(\frac{1}{-jk\pi}e^{-jk\pi t}\Big|_{-1}^{0} - \frac{1}{-jk\pi}e^{-jk\pi t}\Big|_{0}^{1}\right)$$

$$= \frac{1}{-j2k\pi} - \frac{1}{-j2k\pi}e^{jk\pi} - \frac{1}{-j2k\pi}e^{-jk\pi t} + \frac{1}{-j2k\pi}$$

$$= \frac{1}{j2k\pi}e^{jk\pi} + \frac{1}{j2k\pi}e^{-jk\pi t} - \frac{1}{jk\pi}$$

$$c_{odd} = \frac{1}{j2k\pi}e^{jk\pi} + \frac{1}{j2k\pi}e^{-jk\pi t} - \frac{2}{jk\pi}$$

$$= \frac{1}{j2k\pi}(-1) + \frac{1}{j2k\pi}(-1) - \frac{1}{jk\pi}$$

$$= \frac{-2}{jk\pi}$$

$$c_{even} = \frac{1}{j2k\pi}e^{jk\pi} + \frac{1}{j2k\pi}e^{-jk\pi t} - \frac{1}{jk\pi}$$

$$= \frac{1}{j2k\pi}(1) + \frac{1}{j2k\pi}(1) - \frac{1}{jk\pi}$$

$$= 0$$

Therefore, $c_k=\frac{-2}{jk\pi}=\frac{2j}{k\pi}$ when k is odd. All other coefficients are 0.