THE FOLLOWING ITEMS ARE REQUIRED:
- Student's work reproducible from notebook.
- Title and date for each lab section.
- Written in ink.
- Student signed every page.
- Student dated every page.

30 pts PRE-LAB:
- 10 pts (1a)
 - 6 pts Design a circuit to produce Vout = Vin.
- 10 pts (2)
 - 6 pts Design a non-inverting amplifier to produce a gain of 101 V/V.
 - 4 pts Build the non-inverting amplifier on your breadboard.
- 10 pts (2a)
 - 5 pts Description of slew-rate.
 - 5 pts Description of clipping.

30 pts EXPERIMENT 1:
- 5 pts 1.
 - 1 pt Measurement of V_{out}.
 - 1 pt Measurement of current through the 1k “load” resistor.
 - 3 pts Describe in detail where the additional current comes from.
- 15 pts 2.
 - 10 pts Created Bode magnitude plot.
 - 5 pts Rough sketch of the Bode magnitude plot with the following points marked:
 - low-frequency value in the flat section, “corner” frequency (f_c), and the downward slope.
- 5 pts 3.
 - 5 pts Comparison of measured f_c and expected f_c.
- 5 pts 4.
 - 5 pts Verification that V_{out} ~ V_s for a reasonable frequency.
50 pts EXPERIMENT 2:

15 pts (1b) Verification of gain (should be 101 V/V) for a low-frequency value.
5 pts (1c) -3dB point.
5 pts (1e) 2 measurements beyond f_c and the slope of the frequency response curve.
5 pts (1f)
 2 pts Measurement of the phase shift at f_c.
 3 pts Comparison of the theoretical phase-shift (-45º) to your measured phase-shift.
5 pts (1g)
 1 pt Measurement of the gain at 5f_c.
 1 pt Measurement of the gain and phase-shift at 10f_c.
 1 pt Comparison of theoretical gain decrease (factor of 2) to your measured gain decrease.
 2 pts Comparison of theoretical phase-shift of -90º at 10f_c.

5 pts (2a)
 1 pt Sketch of the triangular waveform and indication of the slewing on the sketch.
 1 pt Measurement of the slope of the triangular waveform.
 3 pt Comparison of measured slew-rate to the slew-rate on the data sheet.

5 pts (2b)
 1 pt Value for f_{max}.
 1 pt Measurement of the output voltage (Vpp) at f_{max}.
 3 pts Comparison of fmax to the theoretical value of fmax.

5 pts (3a)
 1 pt Sketch of the clipping waveform and indication of the clipping on the sketch.
 1 pt Measurements of the clipping levels L+ and L-.
 3 pts Comparison of the data-sheet clipping levels to your measured clipping values.

40 pts EXPERIMENT 3

25 pts 1.
 10 pts Circuit built correctly.
 15 pts Circuit works.
8 pts 2. Description of how the volume-control works.
7 pts 3. How much current is being pulled away from the power-supply.