1. Use: ignore \(r_o \), \(|V_{BE}| = 0.7\), \(\beta = 100\)

\(V_t = 1V \)
\(k_n' (W/L) = 10mA/V^2 \)
\(\lambda = 0 \)
\(V_{DO} = 0.8V \)
\(V_{IN} = 5 + 0.001\sin(20t) \)

For DC analysis, assume that the capacitors are open.

(a) Solve for the DC currents:
 a. \(I_D \)
 b. \(I_S \)
 c. \(I_B \)
 d. \(I_E \)
 e. \(I_C \)

(b) Solve for the DC voltages:
 a. \(V_G \)
 b. \(V_S \)
 c. \(V_D \)
 d. \(V_B \)
 e. \(V_E \)

(c) Verify that the MosFet transistor, M1 is saturated. Verify that the BJT transistor, Q2 is active.

2. Create a rough sketch of the total waveforms seen at \(V_O \) and \(V_{O1} \) given \(V_{IN} \) stated above, \(V_B/V_{IN} = -3V/V \), and \(V_{O}/V_B = -27V/V \). Make sure to label all relevant y-axis values (maximum, minimum, etc.). First draw \(V_{O1} \) and then draw \(V_O \). There should be 2 sketches.

3. Use the circuit on the next page: ignore \(r_o \) and \(\lambda \), \(|V_{BE}| = 0.7\), \(\beta = 100\), \(n = 1\), \(V_t = 25mV\), \(V_t(\text{threshold voltage}) = 1V\), \(k_n' (W/L) = 10mA/V^2\), \(V_{sig} = 0.02\sin(20t)\), \(I_{E3} = 4mA\), \(I_{DIODE} = 2mA\), \(I_D = 20mA\)

For the following hybrid-\(\pi \) equivalent circuit below, find the following values:
(a) Find \(r_d \), \(r_{\pi3} \), \(g_m2 \), and \(g_m3 \) values.
(b) \(R_{in} \) (input resistance –ignore only the input source, \(V_{sig} \); include all resistors seen above \(V_{sig} \))
(c) \(R_{out} \) (output resistance-include all resistors at node \{no load is connected\})
(d) Midband gain, \(\frac{V_O}{V_{sig}} \)
4. (a) Explain why or why not this is a good amplifier for voltage amplification, V_o/V_{sig}.
(b) Explain why or why not this is a good amplifier for current amplification, I_{out}/I_{in}.
5. For the circuit shown below:

Draw the AC small-signal equivalent circuit (use hybrid-π or model T). Make sure that everything is labeled in terms of the transistor number. (e.g. g_m1, $v_{π2}$, etc.). **Include** r_o for all transistors. $v_{sig} = 0.001\sin(10t)$ AC.

6. $|V_{BE}| = 0.7$, $β = 100$, ignore r_o, $V4 = (0.1\sin(ωt))$ Volts. Assume that the applied signal frequency is adequate to keep the circuit operating in the flat midband region. Assume that the capacitors act as an open for DC operation and a short for AC operation. The following DC values were measured: $I_D = 1.3m$, $V_D = 9V$, $V_G = 6V$, $V_S = 3.1V$, $I_E = 12mA$, $V_E = 2.3V$, $V_B = 3V$, $V_C = 10V$.

The AC gain was measured to be $V_{o1}/V_4 = 83V/V$, $V_{o2}/V_{o1} = 1V/V$, $r_π = 200Ω$, $g_m_{MOSFET} = 5mA/V$.

- Does this circuit operate as a **linear** AC amplifier with the applied shown voltage? If so, what is the gain, $\frac{V_o}{V_{sig}}$, of the following circuit? If not, explain why.

7. Assume that C2 and C6 contribute pole values less than 1rad/sec. Calculate the pole contributions of C2 and C4. What is f_L (in rad/sec)?