1. Assume the transistors at the right have a finite β and an infinite Early voltage. Write an expression for the input resistance R_{in} in the circuit shown below. Your expression should include only real resistances (R_1, R_2, R_3, R_4, or a subset of these) and possibly β, r_e or $r_{π1}$, and r_e or $r_{π2}$. (Assume all transistors have the same β.) Circle your answer.

2. The transistors below are identical, use $V_{BE}=0.7$, $\beta=100$, $g_m=80\text{m A/V}$, $r_e=1250\Omega$, $C_1=C_2=100\mu\text{F}$.
 (a) Find the complete frequency response for V_o/V_{sig}, ignore r_o and the parasitic capacitors.
 (b) Find the low frequency pole values.

3. Use the following circuit for both problems #3 and #4: $\beta=100$, $|V_{BE}|=0.7$ Find V_{E1}, V_{C1}, V_{C2}, V_{E2}, V_{E3}, V_{C3}, I_{E1}, I_{E2}, and I_{E3}.

4. Analyze the circuit to find the midband gain V_o/V_{sig}, R_{in} (ignore input source, V_{sig}), and R_{out} (ignore $RL=1k$).
5. The input and output curves vs time are shown below. Explain in detail why this circuit is not amplifying the signal and is instead 0V. \(V_{CE_{SAT}} = 0.2 \text{V}, \ V_{BE} = 0.7 \text{V}, \ \text{and} \ \beta = 100. \)

6. \(\beta \) can range from 40 to 200. For the two extreme values of \(\beta (\beta = 40 \ \text{and} \ \beta = 200) \) find \(I_E, \ V_E, \ V_B, \ \text{Rin} (\text{ignore the source resistance} \ 10k), \ \) and the midband voltage gain \(\frac{V_{out}}{V_{sig}}. \)