Use the circuit below:

\[V_{in} \rightarrow \text{Amp1} \rightarrow V_1 \rightarrow \text{Amp2} \rightarrow V_0 \]

Use \(f_t = 9 \text{MHz} \) for both amplifiers.

State the overall transfer function \((V_o/V_{in}) \) by knowing that it is limited in frequency. (Use the above \(f_t \))

\[
\begin{align*}
\text{gain for } \frac{V_1}{V_{in}} &= -\frac{3K}{(2K+12K)} = -\frac{3K}{14K} = -\frac{3}{14} \frac{V}{V} \\
\text{gain for } \frac{V_o}{V_1} &= -\frac{36K}{(3K+14K)} = -\frac{36K}{17K} = -\frac{36}{17} \frac{V}{V}
\end{align*}
\]

Because of frequency limit, \(f < f_t \)

\[
\begin{align*}
\frac{V_1}{V_{in}} &= -\frac{3}{\left(\frac{S}{3M} + 1\right)} \\
\frac{V_o}{V_1} &= -\frac{9}{\left(\frac{S}{M} + 1\right)}
\end{align*}
\]

\[
\Rightarrow \frac{V_o}{V_{in}} = \frac{V_1}{V_{in}} \cdot \frac{V_o}{V_1} = \frac{-3}{\left(\frac{S}{3M} + 1\right)} \cdot \frac{-9}{\left(\frac{S}{M} + 1\right)} = \left(\frac{27}{\left(\frac{S}{3M} + 1\right) \left(\frac{S}{M} + 1\right)}\right)
\]
Assume all diodes are identical and have $V_{DO}=0.7V$, $n=1$, and $V_T=25mV$. Use the constant voltage drop method. Verify that your assumption for the diode operation (i.e. on or off) are correct. Find the following making sure you find the correct operation of the diodes.

a) State your assumptions (diode is on/off).
b) The current I_{D1}
c) The current I_{D2}
d) The voltage V_o
e) Your verification to prove your assumptions for the diodes are correct.
f) If there is noise on the 2V supply of ±1V, what is the total value for I_{D2} (the AC current through diode, D2). [Hint: remember to use the AC model for the diode]

Assume $D1$ off, $D2$ on:

$$-2 - I_{D2} (100) - I_{D2} (73) - 0.7 + 20 = 0$$

$$I_{D2} (173) = 18 - 0.7$$

$$I_{D2} = \frac{17.3}{173} = 0.1A$$

$$I_{D1} = 0$$

or $$-2 - I_{D2} (100) - V_o = 0$$

$$V_o = -2 - 0.7 (100) = -12V$$

Check Assumptions: $I_{D2} > 0 \Rightarrow D2$ on

+10 + $V_{D1} - V_o = 0$

$V_{D1} = -10 + (-12) = -22 < 0.7 \Rightarrow D1$ off

AC model:

$$r_d = \frac{nV_T}{I_{D2}} = \frac{(1)(25)}{0.1} = 250$$

$$I_{D2_{AC}} = \frac{\pm1V}{100 + 73 + r_d} = \pm0.577\mu A$$

$$I_{D2_{total}} = 0.1 \pm 0.577\mu A$$
a) Sketch the Bode (both magnitude & phase) plot for: (label all critical values for both magnitude and phase and show all your work)

\[H(s) = \frac{600 \text{Meg} \cdot s}{(s + 10k)^2} = \frac{6 \cdot 6 \times 10^6 \cdot s}{(10k)^2 (\frac{s}{10k} + 1)^2} = \frac{6s}{(\frac{s}{10k} + 1)^2} \]

b) What is the estimated magnitude value at \(\omega = 5k \text{ rad/sec} \) (in dB):

\[20 \log \left[\frac{6(5k)}{(\sqrt{(\frac{5k}{10k})^2 + 1})^2} \right] = 87.6 \text{ dB} \]

c) What range of frequency will this circuit operate correctly:

This circuit does not have a flat region of operation.
\[H(s) = \frac{600 \text{Meg} \cdot s}{(s+10k)^2} = \left(\frac{s}{\frac{5}{10k}+1} \right)^2 \]

At \(w = 1 \Rightarrow 20 \log(6) = 15.6 \text{dB} \)
(solving for $R_o=1k$)

\[V_1 = \frac{15k}{20k+1k} V_s = \frac{150V_s}{21k} = \frac{30(20k)V_s}{21k} = 28.6V_s \]

\[V_3 = \frac{30V_s(30k)}{30k+21k} = \frac{30(30k)V_s}{51k} = 17.65V_s \]

\[V_1 = \frac{V_5 (15k)}{15k+15k} = \frac{1}{2} V_s \]

\[\frac{V_L}{V_s} = 28.6(17.65)^{\frac{1}{2}} \approx 252 \]

\[I_L = \frac{V_L}{40k} \]

\[I_s = \frac{V_s}{30k} \]

\[A_p = \frac{I_L}{I_s} \frac{V_L}{V_s} = \frac{V_L}{40k \cdot V_s} \frac{V_L}{V_s} = \left(\frac{V_L}{V_s} \right)^2 \frac{3}{4} \]

\[b. \quad A_p = (252)^2 \frac{3}{4} = 47.6 \text{ K} \quad \text{or} \quad 10 \log (47.6k) = 46.8 \text{ dB} \]

C. 12

clipping at $V_s = 47.6 \text{ mV}$
5a. \(V_L = \frac{30V_3 \cdot (20K)}{20K+100K} = \frac{30(20K)V_3}{120K} = 5V_3 \)

\(V_3 = \frac{(30V_3)(30K)}{30K+120K} = \frac{30(30K)V_1}{150K} = 6V_1 \)

\(V_1 = \frac{V_5}{15K} = \frac{1}{2} V_5 \)

\(\frac{V_L}{V_5} = 5 \left(\frac{6}{\frac{1}{2}} \right) = 15 \frac{V}{V} \)

\(I_L = \frac{V_L}{40K} \)

\(I_S = \frac{V_5}{30K} \)

\[A_p = \frac{I_L}{I_S} \cdot \frac{V_L}{V_S} = \frac{V_L}{40K \cdot V_S} \cdot \frac{V_L}{V_S} = \left(\frac{V_L}{V_S} \right)^2 \left(\frac{3}{4} \right) \]

b. \(A_p = \left(15 \right)^2 \left(\frac{3}{4} \right) = \frac{168.75 \text{ W}}{\text{W}} \) or \(10 \log (168.75) = 22.3 \text{ dB} \)
V_s is an AC signal. Assume linear operation. Both amplifiers have the following characteristics:

$A_{\text{av}} = 30$, $R_{\text{in}} = 30k\Omega$, (encircled $R_0 = 1k\Omega$) power supplies = ±12 V

(a) Draw this 2 stage amplifier using the voltage amplifier model. Make sure to label V_s, V_1, V_2, V_3, and V_L on the schematic.

(b) Find the voltage gain V_L/V_s without frequency dependence or op amp imperfections.

(c) Find $A_p = \frac{P_L}{P_s} = \frac{i_L \ast V_L}{i_s \ast V_s}$ without considering imperfections of the opamp. Express your answer as a ratio (W/W) and in dB. [Round the answer to the nearest whole number]

(d) For the input V_s as shown (assume op amp is operating in correct frequency), sketch (make the peaks exact and estimate between the peaks) the output at V_L on the graph below.

[Cropped graph showing peaks with text: "CLIPS when $V_s = 8V"]
Use the circuit below:

Use $f_t=15$ MHz for both amplifiers.
State the overall *frequency* transfer function (V_o/V_{in}) in terms of R_1, R_2, R_3, R_4, R_5, and R_6.

$$\text{Amp 1} \Rightarrow \frac{V_i}{V_{in}} = -\frac{R_3}{(R_1||R_2)} \left[\frac{S}{15\text{MHz}} + 1\right]$$

$$\text{Amp 2} \Rightarrow \frac{V_o}{V_i} = -\frac{R_6}{(R_4||R_5)} \left[\frac{S}{5\text{MHz}} + 1\right]$$

$$\frac{V_o}{V_{in}} = \left(1 + \frac{R_3}{R_1||R_2}\right)\left(1 + \frac{R_6}{R_4||R_5}\right) \left[\frac{SR_3}{15\text{MHz}(R_1||R_2)} + 1\right]\left[\frac{SR_6}{5\text{MHz}(R_4||R_5)} + 1\right]$$
Redraw or add to the schematic below to show how to reduce the effect of the input bias current. State the symbolic value(s) of any components added to the schematic. State the answer in terms of R_1, R_2, R_3, and R_4.

\[R_1 \parallel R_2 \parallel (R_3 + R_4) \]
Given: Assume $V_{DC}=0.6V$, $n=1$, and $V_T=25mV$
Assume identical diodes
Use the constant voltage drop method when appropriate

a) Determine the DC component of the diode current through D1, i_{D1}
b) Determine the DC component at the output, V_o.
c) Determine the AC component of the diode current through D3, i_d.
d) Determine the AC component at the output, V_o.
e) What is the total output for V_o.

Assume: D1-on, D3-on, D2-off

a. $-10 + I_{D1}(75k) + 0.6V f_{D1}(200) - 10 = 0$

 $I_{D1} = \frac{20 - 1.2}{75,200} = \frac{18.8}{75,200} = 250\mu$A

 $I_{D1} > 0$:: D1, D3 on

b. $-V_o + I_{D1}(200) + 0.6 - 10 = 0$

 $V_o = I_{D1}(200) - 9.4 = -9.35V$

d. $V_{oa} = -9.35 - 15 = -24.35 < 0$:: D2 off

c. $V_{ac} = \frac{\sin(60t)(300+rd)}{(75,200 + rd + rd)}$

 $r_d = nV_T = \frac{1(25mV)}{250\mu} = 100$

 $r_d = r_d = r_d = r_d$

 $V_{ac} = \frac{\sin(60t)(300)}{(75,400)} = 4m \sin60t$

 $i_d = \frac{\sin(60t)}{75,200 + 200} = 13.3\mu \sin(60t)$

 check validity:

 $V_{ac} = i_d (100) = 1.3m \sin(60t) < 10mV$

 $V_{total} = -9.35 + 4m \sin(60t)$
9.

Assume all diodes are identical and have $V_{DO} = 0.7V$. Use the constant voltage drop method. Verify that your assumption for the diode operation (i.e. on or off) are correct. Find the following making sure you find the correct operation of the diodes.

a) State your assumptions (diode is on/off):

D1 - On
D2 - Off

b) The current I_1

c) The current I_2

d) The current I_3

e) The voltage V_o

f) Your verification:

\[
\begin{align*}
I_1 &= \frac{10 - V_0 + 0.7}{1k} = \frac{10 - 6.65 + 0.7}{1k} = \frac{2.65}{1k} = 2.65mA \\
I_2 &= 0 \\
I_3 &= \frac{V_0 - 5}{1k} = \frac{6.65 - 5}{1k} = 1.65mA \\
I_1 &= I_3 + 1mA \\
\frac{9.3 - V_0}{1k} &= \frac{V_0 - 5}{1k} + 1mA \\
V_0 &= \left(\frac{1}{1k} + \frac{1}{1k}\right) = \frac{5}{1k} + \frac{9.3}{1k} - 1mA \\
V_0 &= \frac{13.3m}{2mA} = 6.65V
\end{align*}
\]

Verification:

\[I_1 > 0 \implies \text{on}\]

\[V_0 + V_0 = 0 \implies V_0 = -6.65 < 0 \implies \text{off}\]
D2 "on", D1 "on"

\[+I_1 (1k) - 10 + 0.7 + V_0 = 0 \]

\[I_1 = \frac{-V_0 + 9.3}{1k} = 10m \geq 0 \text{ on} \]

\[-V_0 - 0.7 = 0 \]

\[V_0 = -0.7V. \]

\[I_3 = \frac{(V_0 - 5)}{1k} = -5.7m \]

\[I_2 = I_3 + 1m - I_1 \]

\[I_2 = -5.7m + 1m - 10m = -14.7 < 0 \]

Not valid assumptions

D1 "off", D2 "on"

\[V_0 = -0.7 \]

\[I_3 = \frac{(V_0 - 5)}{1k} = -5.7m \]

\[I_2 = I_3 + 1m = -4.7m < 0 \Rightarrow \text{Not on} \]

\[-V_0 + 5 - 1m(1k) = 0 \]

\[V_0 = 5 - 1 = 4V \]

\[-V_0 - V_{D1} + 10 = 0 \]

\[V_{D1} = 10 - V_0 = 6V < 0 \Rightarrow \text{Not off} \]

D1, D2 "off"