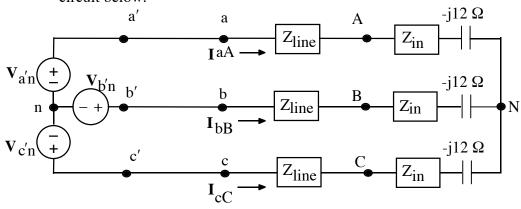

2270



PRACTICE FINAL EXAM SOLUTION Prob 4

4. (50 points)

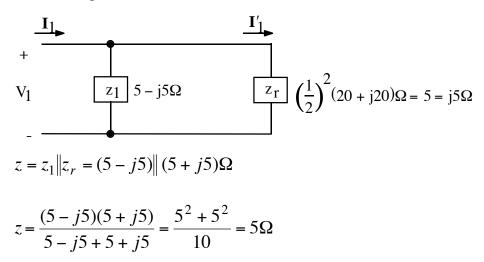
- a. Find the input impedance, $z_{in} = V_1/I_1$, for the above circuit.
- b. Using z_{in} from (a), find a numerical expression for \mathbf{V}_{AB} in the circuit below.

Balanced three-phase system.

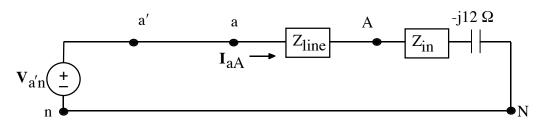
$$\mathbf{V}_{an} = 52 \angle 0^{\circ} V$$
 $\mathbf{V}_{bn} = 52 \angle -120^{\circ} A$ $\mathbf{z}_{line} = \mathrm{j} 12 \ \Omega$

ans: a) $z_{in} = 5 \Omega$

b)
$$V_{AB} \approx 234 \angle -37.38^{\circ} V$$

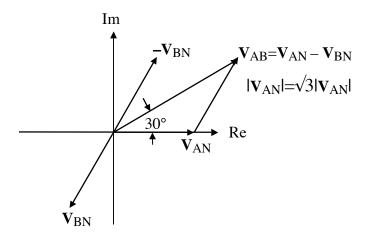

sol'n: (a) Transformer is ideal. To distinguish currents in the transformer itself from other currents, we use a prime to denote the transformer currents. The current flowing into the dot on the primary side is \mathbf{I}'_1 , and the current flowing out of the dot on the secondary side is \mathbf{I}'_2 :

$$\begin{vmatrix}
\mathbf{I} & \mathbf{I} & \mathbf{I} \\
\mathbf{I}$$


Using the above model, we can derive the formula (or we can just look up the formula) for secondary impedance reflected into the primary:

$$z_r = \left(\frac{N_1}{N_2}\right)^2 z_2$$

Our model, given $N_1/N_2 = 1/2$ turns ratio, is:


sol'n: (b) Our first step is to convert our circuit to a Y - Y form so we can use a single-phase equivalent model. In this problem, the circuit is already in Y - Y form and we may draw the single-phase equivalent directly:

We find V_{AN} and then calculate V_{AB} using phasor diagrams. We obtain V_{AN} from the voltage divider formula:

$$\begin{split} \mathbf{V}_{AN} &= \mathbf{V}_{a'n} \frac{z_{in} - j12\Omega}{z_{line} + z_{in} - j12\Omega} \\ \mathbf{V}_{AN} &= 52\angle 0^{\circ}V \frac{5\Omega - j12\Omega}{j12\Omega + 5\Omega - j12\Omega} = 52\angle 0^{\circ}V \frac{5\Omega - j12\Omega}{5\Omega} \\ \mathbf{V}_{AN} &= 52\angle 0^{\circ}V \frac{13\angle - 67.38^{\circ}\Omega}{5\Omega} \end{split}$$

We use a phasor diagram to relate V_{AN} to V_{AB} . The diagram shows the relationship between V_{AN} and V_{AB} , and we assume V_{AN} has phase angle zero so we can find the relative phase angle of V_{AB} .

From the diagram, we deduce that

$$\mathbf{V}_{AB} = \mathbf{V}_{AN} \cdot \sqrt{3} \angle 30^{\circ}$$

Plugging in the value of V_{AN} gives the numerical value of V_{AB} .

$$\mathbf{V}_{AB} = 52 \angle 0^{\circ} V \frac{13 \angle -67.38^{\circ} \Omega}{5 \Omega} \sqrt{3} \angle 30^{\circ} = \frac{52 \cdot 13 \cdot \sqrt{3}}{5} \angle -37.38^{\circ} V$$

$$V_{AB} \approx 234 \angle -37.38^{\circ} V$$