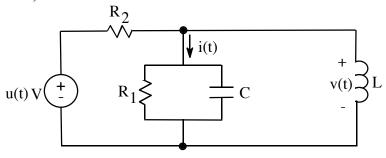

1. (50 points)

After having been open for a long time, the switch is closed at t = 0.

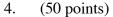
 $R_1 = 12.5\Omega$ $R_2 = 12.5\Omega$ $L = 6.25 \ \mu H$

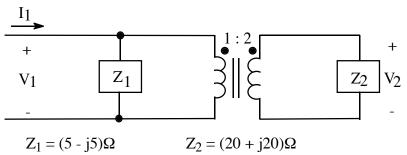
- a. Two capacitances are available: 2 nF and 250 nF. Specify the value of C that will make v(t) overdamped.
- b. Using the value of C found in (a), write a time-domain expression for v(t).
- 2. (50 points)

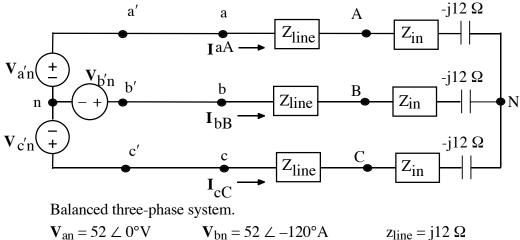

a. Determine the coefficients of the Fourier series, a_v , a_n , and b_n , for the periodic waveform $v_i(t)$. Also, use these Fourier coefficients to find the coefficients of the first five terms of the Fourier series written in terms of inverse phasors:

$$v_1(t) = a_v + \sum_{n=1}^{\infty} A_n \cos\left(n\omega_0 t + \theta_n\right)$$

Note any symmetry properties of the waveform that you use to determine coefficients.


b. The circuit on the left is a filter with output $v_0(t)$. Design a circuit to be placed in the box such that the filter rejects the fundamental frequency of $v_i(t)$ and has a bandwidth of 10,000 rad/sec. Specify the component values. Show how the components are connected in the circuit.




The initial energy stored in the circuit is zero. $R_2 = 500 \ \Omega$ $L = 200 \ mH$

- a. Choose values of R_1 and C to accomplish the following:
 - (1) v(t) and i(t) are decaying sinusoids 90° out of phase with each other.
 - (2) $1/\alpha = T$, where α is the exponential decay constant and T is the period of oscillation of the decaying sinusoid.
- b. With the component values you chose in the circuit, write numerical expressions for v(t) and i(t).

- a. Find the input impedance, $z_{in} = V_1/I_1$, for the above circuit.
- b. Using z_{in} from (a), find a numerical expression for V_{AB} in the circuit below.

