ECE2270 Lab2 – Report Point Breakdown

Communication Organization (ease of locating figures/code/etc) Clarity of style (ease of reading, and etc.) English (grammar, punctuation, and etc.) Introduction Figure titles and numbers Equations explained (at least one sentence between equations) Matlab listings and comments	30 Points Tot	tal 5 5 3 4 5
Component Measurements Explanation of procedure for finding R _s , C _s Table listing R _s , C _s (Measured Values)	5 Points To	tal 3 2
Preliminary Work Matlab Code of function summing Fourier series Matlab Plot of 1kHz triangle wave using function summing Fourier series Explain how Fourier series for $v_o(t)$ obtained using phasors Matlab Code calculating $v_o(t)$ for arbitrary component values Matlab Plot of $v_o(t)$ for component values in handout (blocks 1.2kHz) 1kHz=1/1ms trian Matlab Code plotting frequency response, lH(s)l, vs frequency for arbitrary component v Matlab Plot of frequency response, lH(s)l, vs frequency for component values in handout Explain above Matlab Plot of $v_o(t)$ given frequency response plot Matlab Plot of $v_o(t)$ for component values in handout (blocks 1.2kHz) 0.6ms triangle inp Explain Matlab Plot of $v_o(t)$ given frequency response plot Matlab Plot of $v_o(t)$ for component values in handout (blocks 1.2kHz) 0.834ms triangle in Explain Matlab Plot of $v_o(t)$ given frequency response plot	alues	tal 2 2 2 2 2 2 2 2 2 2 1 1 1 1
Circuit Design Determine values of C_1 and C_2 that will block 1kHz and pass 3kHz (ignore R_s and C_s) Matlab Plot of frequency response, IH(s)l, vs frequency for your component values (and Matlab Plot of $v_o(t)$ for your component values (and R_s and C_s) 1kHz=1/1ms triangle inp Explain Matlab Plot of $v_o(t)$ given frequency response plot Determine values of C_1 and C_2 that will block 9kHz and pass 27kHz (ignore R_s and C_s) Matlab Plot of frequency response, IH(s)l, vs frequency for your component values (and Matlab Plot of $v_o(t)$ for your component values (and R_s and C_s) 9kHz triangle input Explain Matlab Plot of $v_o(t)$ given frequency response plot	ut	tal 3 2 3 2 3 2 3 2 3 2
Measurements (all for \approx 1kHz triangle wave input) Table listing all measured Component Values for your actual circuit (blocks 1kHz, passe Explain procedure for measuring frequency response, lH(s)l, vs frequency for your actual Plot of measured frequency response, lH(s)l, vs frequency for your actual circuit Explanation of how you chose actual Fundamental Frequency of your triangle wave input Plot of measured v _o (t) for your component values with 1kHz triangle input	l circuit	tal 3 3 3 3 3
Comparison of Calculated and Measured Results (all for \approx 1kHz triangle wave input) Matlab Comparison Plot of Calculated and Measured freq response, lH(s)l, vs freq for you Matlab Comparison Plot of Calculated and Measured v _o (t) for your component values (a Comments on Measured vs. Calculated Comparison		tal 2 2 1

Conclusion

5 Points Total