Ex:

$$V_{a'n} = 82 \angle 0^{\circ} V$$

$$z_{\rm gY}=0.1~\Omega$$

$$V_{b'n} = 82 \angle 120^{\circ} V$$

$$z_{\text{line}} = 39 + j5 \Omega$$

$$V_{c'n} = 82 \angle -120^{\circ} V$$

$$z_{\rm LY} = 0.9 + j4 \Omega$$

- a) Draw a single-phase equivalent circuit.
- b) Calculate V_{AB} .

Sol'n: a) Since this circuit is already a Y-Y configuration, we obtain the single-phase equivalent circuit by adding a wire from n to N (which carries no current) and drawing only the A phase.

b) We find V_{AB} from V_{AN} and a phasor diagram that shows how V_{AN} and V_{AB} are related.

We have $V_{AB} = V_{AN} - V_{BN}$:

From symmetry and the phase angle shift of +120° from $V_{a'n}$ to $V_{b'n}$, we know $V_{BN} = V_{AN} \cdot 12 + 120°$.

$$\therefore V_{AB} = V_{AN} - V_{AN} \cdot 1 \angle +120^{\circ}$$

We use a phasor diagram for the subtraction.

Note: We translate the $-V_{BN}$ vector so it starts where V_{AN} ends. This allows us to add V_{AN} and $-V_{BN}$ graphically.

Note: We always draw the diagram by starting with the shorter vector, V_{AN} , on the real axis. Then we perform the subtraction of the two shorter vectors, V_{AN} and V_{BN} , to get the longer vector V_{AB} . Thus, the diagram indicates how V_{AN} and V_{AB} are related by magnitude and phase rather than the actual phase of either V_{AN} or V_{AB} .

From the diagram, we have the following relationship between $V_{\rm AN}$ and $V_{\rm AB}$:

$$V_{AB} = V_{AN} \cdot \sqrt{3} \cdot \angle - 30^{\circ}$$

Now we find VAN from the single-phase model.

We use a voltage-divider egh to find V_{AN} :

$$V_{AN} = V_{a'n} \cdot \frac{Z_{LY}}{Z_{gY} + Z_{line} + Z_{LY}}$$

$$= 82 \angle 0^{\circ} V \cdot \frac{0.9 + j4 \Omega}{0.1 + 39 + j5 + 0.9 + j4 \Omega}$$

$$= 82 \angle 0^{\circ} V \cdot \frac{0.9 + j4}{40 + j9}$$

$$= 82 \angle 0^{\circ} V \cdot \frac{4.1 \angle 77.3^{\circ}}{41 \angle 12.7^{\circ}}$$

$$= 8.2 \angle (0^{\circ} + 77.3^{\circ} - 12.7^{\circ}) V$$

$$V_{AN} = 8.2 \angle 64.6^{\circ} V$$

Using our egn from earlier

$$V_{AB} = V_{AN} \cdot \sqrt{3} \angle -30^{\circ}$$

= 8.2 \(\alpha \text{64.6}^{\circ} \nu \cdot \sqrt{3} \alpha -30^{\circ}\)
 $V_{AB} = 14.2 \(\alpha \text{34.6}^{\circ} \nu\)$

or
$$V_{AB} = 11.7 + j8.1 V$$