ECE 2270 F 06

Im

1. a) Find
$$\mathcal{L}\left\{\int_0^t e^{-6\tau} u(6\tau) d\tau\right\}$$
.

b) Find
$$f(t)$$
 if $F(s) = \frac{6s + 27}{s^2 + 4s + 29}$

c) Find
$$\lim_{t \to \infty} f(t)$$
 if $F(s) = \frac{3}{s[(s+4)^2 + 36]}$

d) Plot the poles and zeros of F(s) in the *s* plane.

2.

- a) Write the Laplace transform, $V_{g1}(s)$, of $v_{g1}(t)$.
- b) Draw the s-domain equivalent circuit, including sources $V_{g1}(s)$ and $V_{g2}(s)$, components, initial conditions for L, and terminals for $V_0(s)$. Note that the 30 V source is on for all time.
- c) Write an expression for $V_0(s)$. You may write parallel impedances using the \parallel operator without having to simplify them.
- d) Apply the initial value theorem to find $\lim_{t\to 0^+} v_o(t)$.

3. Find the inverse Laplace transform for each of the following expressions:

$$i_{g}(t) = 3e^{-10t}\cos(3t) \text{ A}$$

Note: The initial voltage on the capacitor is $v_{\rm C}(t = 0^-) = 3 {\rm V}$.

- a) Write the Laplace transform $I_g(s)$ of $i_g(t)$.
- b) Write the Laplace transform $V_0(s)$ of $v_0(t)$. Be sure to include the effects of the initial voltage on the C.
- c) Write a numerical time-domain expression for $v_0(t)$ where t > 0. Hint: plug in numbers and look for terms that cancel before computing partial fractions.