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Multiplication by t

IDENTITY:
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PROOF: Use induction.

First, verify the identity for n = 1.  From straightforward calculations, the
following result is known:
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For n = 1, the identity gives the same result:
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NOTE: 0! = 1.

Thus, the identity is valid for n = 1.

Now assume the identity is valid for n > 1 and show that it holds for n + 1.

Thus, we assume the following is true:
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Apply the following identity for Laplace transforms:
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ds

  where   
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This yields the following result:
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Multiplication by t (cont.)

Since the Laplace transform is linear, we have the following identity:
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Applying this to our last result yields an equation that matches the identity
we are trying to prove when n + 1 is substituted for n:
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By the axiom of induction, it follows that the identity holds for all n ≥ 1,
and our proof is complete.


