HW 5 prob 2 solution

IDENTITY:

$$\mathcal{L}{f(at)} = \frac{1}{a}F\left(\frac{s}{a}\right) \text{ for } a > 0$$

PROOF: By definition, we have the following equation:

$$\mathcal{L}{f(at)} = \int_{0^{-}}^{\infty} f(at)e^{-st}dt$$

We change variables to $\tau = at$.

At
$$t = 0^-$$
, $\tau = a0^- = 0^-$.

For t -> ∞ , $\tau = a \infty = \infty$.

Inside the integral, $st = s\tau/a$.

For *dt* we have $d\tau/dt = a$, so $dt = \tau/a$.

Making these substitutions, our identity is verified:

$$\mathcal{L}\{f(at)\} = \int_{0^{-}}^{\infty} f(\tau) e^{-\frac{s}{a}\tau} \frac{d\tau}{a} = \frac{1}{a} \int_{0^{-}}^{\infty} f(\tau) e^{-\frac{s}{a}\tau} d\tau = \frac{1}{a} F\left(\frac{s}{a}\right).$$