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The current source is a dc current source. After being open for a long
time, the switch is closed at t = 0.

a. Write a numerical time-domain expression for v(t).

b. From the Laplace transform of v(t), find the numerical values of v(t) for

t=0Tand t — oo.

ans: a) Vv(r>0)= %e_SOkt - %e—200kt %

b) v(t=0%) =2V, v(t—=x)=0V

sol'n: (a) First we find initial conditions for L. and C. (We need these for s-domain
models of L and C.)

For t =0, L acts like short, C acts like open circuit.
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When we close the switch, we short out the first R.

s-domain model:



L model C model
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Note: A DC source corresponds to a step function even if there is no

switch and the source has the same output for all time. Thus, we

have Ig/s as the source in the s-domain. (Conceptually, we only

need the current source for t > 0 because the initial conditions on L

and C account for what the current source did for t < 0.)
1
L{Ig} = L{Ig”(t)} ~

Note: We may choose either a series sL. and V-source for L or a parallel
sL and I-source for L. Here, the parallel I-source model is more

convenient. The same applies to the C.

Normally, we might use superposition at this point, turning on the I-sources

one at a time and then summing currents or voltages to get a final answer.

Here, however, we have parallel I-sources that sum:
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Combining the parallel impedances and using V = Iz, we have
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V(s)=|—+2uFV|-sLIIRIl—
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To compute the parallel z value, we factor out numerators and use the

following identity:
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Thus, we factor out sL and R:
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Now divide by RLC to get denominator in proper form:
1 s
I
RC LC

Check: Using the numerator and the first term in the denominator, we have

the following units analysis:

s/C 1

52 sC

Thus, we have an impedance as we should have. The other terms in
the denominator have the same units as s2 since the units of s are,

ironically, 1/sec or 1/s.

Now we plug in numbers to compute V(s):
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quadratic poles term

Find poles for quadratic term in preparation for partial fractions:

2
IM / M
$1,2=- ry * ] -10G not complex poles

I
JJ(125K)2 - (100k)2

51, =-125k + 75k rad/s (based on 52 — 42 = 32 pythagorean triple)
s1 =-50k, sp =200 rad/s

Now use partial fractions:

V(s)= ky + ky
s+ 50k s+200k




sol'n: (b)
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Use the standard inverse Laplace transform term:

L_l{ k }= ke~4
S+a

This gives the final answer:

V(s)=
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Use the initial value theorem to find v(t=07%):
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The largest power of s dominates in the numerator and in the denominator.
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Note: We expect v(0+) =2V since this is the initial capacitor voltage.

Use the final value theorem to find v(t—°):
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Note: We expect v(t) to decay, since L becomes a short.



