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N. Cotter PRACTICE FINAL EXAM SOLUTION: Prob 1

1. (50 points)

C
R

t = 0
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+ V   = 100 V
12R L

v +-

-

After having been open for a long time, the switch is closed at t = 0.

R1 = 12.5Ω R2 = 12.5Ω L = 6.25 µH

a. Two capacitances are available:  250 nF and 2 nF.  Specify the value of C
that will make v(t) overdamped.

b. Using the value of C found in (a), write a time-domain expression for v(t).

ans: a) C = 250 nF

b) v(t) = 13.3 (e-0.4Mt – e–1.6Mt) V

sol'n: (a) To make the response overdamped, we must have two real characteristic
roots.  We use the circuit for t > 0, consisting of C, R1, L, and vA in series.
We may find the characteristic equation by looking it up in a textbook or by
setting the impedance of R1, C, and L in series to zero.
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z = R1 +
1
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+ sL = s 2 +
R1
L
s +

1
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= 0

The characteristic roots for the quadratic equation are
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R
2L

±
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 
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 
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2
−
1
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or

€ 

s1,2 = −α ± α2 −ωo
2 α ≡

R
2L

ωo ≡
1
LC

We want an overdamped response, (real roots α2 > ωo2).

€ 

α =
R
2L

=
12.5Ω

(2) 6.25 µH
=
12.5
12.5

M rad/s =1M rad/s

Try each C value in turn.



C = 2 nF:

€ 

ωo =
1

6.25 µH ⋅2 nF
=

1
12.5 m ⋅1µ

=
1M

1.1118
 rad/s

ωo = 8.9M rad/s > α2 (underdamped)

C = 250 nF:

€ 

ωo =
1

6.25 µH ⋅250 nF
=

1
1562.5 m ⋅1µ

=
1M
1.25

 rad/s

ωo = 0.8M rad/s < α2 (overdamped)

We need C = 250 nF for an overdamped solution.

sol'n: (b) We use the exponential solution for the overdamped case:

€ 

v(t) = A1e
s1t + A2e

s2t + A3
Because the value of A3 is all that is left of v(t) as t → ∞, we first find the
constant term, A3.  (The other terms decay because the characteristic roots
always have negative real parts in a passive RLC circuit.  When the switch
opens, the energy sloshing back and forth in the L and C will decay owing to
power dissipated by the series resistor R1.)

As t  → ∞, the circuit reaches equilibrium.  C acts like an open circuit, L acts
like a short circuit or wire.

Model:

+–

R1

vC(∞)

iL(∞)

VA = 100V
vC(∞) = 100V

iL(∞) = 0A

+ –v(∞)

Since L acts like a wire, there is no voltage drop across it.

Thus, A3 = v(t→∞) = 0.

We find coefficients A1 and A2 by matching initial conditions in the circuit.
We find initial conditions by examining the circuit at t = 0–, when the circuit
has reached equilibrium.  We find the values of iL and vC, the energy
variables, at t = 0– and use the same values at t = 0+ (since the energy in the
circuit cannot change instantly).



Mathematically, our general form of solution for the overdamped case gives
the following values for v(0+) and dv(t)/dt|t=0+:

€ 

v(0+ ) = A1 + A2 + A3 = A1 + A2

€ 

dv(t)
dt t=0+

= A1s1 + A2s2.

Note: We must always differentiate first and then plug in t = 0+.  Otherwise,
we always get zero.

Now we find the numerical values of v(0+) and dv(t)/dt|t=0+.

At t = 0–, C acts like an open circuit and L acts like a short circuit.

Model:

+–

R1

R2
12.5 Ω

12.5 Ω

+

-
vC(0−)

iL(0−)

100 V

€ 

iL (0
− ) =

100V
25Ω

= 4A

€ 

vC (0
− ) =100V ⋅12.5Ω

25Ω
= 50V

At time t = 0+, we have iL(0+) = iL(0–) = 4 A and vC(0+) = vC(0–) = 50 V.
We solve the circuit at t = 0+, treating iL(0+) as a current source and vC(0+)
as a voltage source.

We now solve for v(0+) and dv(t)/dt|t=0+.  From these we find A1 and A2.

Model:

C
R

AV   = 100 V
1

L

v(0+) +-

+-+- vC(0+) iL(0+)

We may apply any standard method to solve the circuit, but we can solve the
above circuit using a voltage loop.



€ 

v(0+ ) = vA − iL (0+ )R1 − vC (0+ ) = 100V− 4A ⋅12.5Ω− 50V = 0 V

The same equation applies for t > 0, and we may differentiate to find dv(t)/dt
in terms of energy (or state) variables iL and vC.

€ 

v(t) = vA − iL (t)R1 − vC (t)

€ 

dv(t)
dt

= −
diL (t)
dt

R1 −
dvC (t)
dt

The basic equations for L and C, rearranged, allow us to translate the
derivatives on the right side of this equation into non-derivatives we can
calculate numerically.

€ 

diL (t)
dt

=
1
L
vL (t)

€ 

dvC (t)
dt

=
1
C
iC (t)

Applying these identities, we have

€ 

dv(t)
dt

= −
1
L
vL (t)R1 −

1
C
iC (t).

Only now that we have differentiated do we finally evaluate the derivative
we seek at t = 0:

€ 

dv(t)
dt t=0+

= −
1
L
vL (0

+ )R1 −
1
C
iC (0

+ ).

€ 

dv(t)
dt t=0+

= −
1

6.25µH
⋅0V ⋅12.5Ω−

1
250nF

iC (0
+ ).

Since iC is in series with iL, we have iC(0+) = iL(0+) = 4A.

€ 

dv(t)
dt t=0+

= −
4A

250nF
= −16 MV/s

Now we find A1 and A2.

€ 

v(0+ ) = 0 = A1 + A2 ⇒ A2 = −A1

€ 

dv(t)
dt t=0+

= −16MV/s = A1s1 + A2s2 = A1(s1 − s2 ).



€ 

s1 − s2 = −α + α2 −ωo
2 − −α − α2 −ωo

2( )

= 2 α2 −ωo
2

= 2 (1M )2 − (0.8 M )2

= (2) 0.6 M =1.2 M

Concluding the algebra, we find the numerical values of the coefficients A1
and A2.

€ 

A1 =
16 M v/s
1.2 M

=13.3 v/s

€ 

A2 = −13.3 v/s

Using the values of α and ωo from above, we find the values of s1 and s2.

s1 = –1 M + 0.6 M = –0.4 M

s2 = –1 M – 0.6 M = –1.6 M

Plugging into the general form of underdamped solution completes our
answer:

v(t) = 13.3 (e-0.4Mt – e–1.6Mt) V


