1. - a) Calculate the value of rms current, I_{rms} , flowing down through the dashed box. - b) Calculate the complex power, S, for the circuitry inside the dashed box. Draw a single-phase equivalent circuit. 3. Calculate the voltage drop V_{BC} from B to C. Calculate the numerical value of phasor current, I_1 , flowing into the primary side of the transformer. Note: the transformer is linear. 5. The turns ratio of the transformer is $N_1/N_2 = 6$. Calculate the numerical value of phasor current, **I**, flowing down through the capacitor. Note: the transformer is ideal.