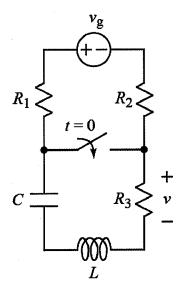
U

Ex:



After being open for a long time, the switch closes at t = 0.

a) Give expressions for the following in terms of no more than v_g , R_1 , R_2 , R_3 , L, and C:

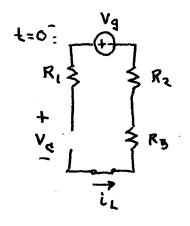
$$v(t=0^+)$$
 and
$$\frac{dv(t)}{dt}\Big|_{t=0^+}$$

b) Find the numerical value of C given the following information:

$$s_1 = s_2$$
 $R_1 = 2.7 \Omega$ $R_2 = 300 \Omega$ $R_3 = 2 \Omega$ $L = 3.3 \mu H$

soln a) To find initial conditions, we first find the value of energy variables it and v_c at t=0. These values will not change as the switch moves. Thus, $i_{L}(o^{+}) = i_{L}(o^{-})$ and $v_{c}(o^{+}) = v_{c}(o^{-})$, and we can model the L and C as an i-src and v-src, respectively.

At t=0, the circuit has stabilized and L=wire and C=open.

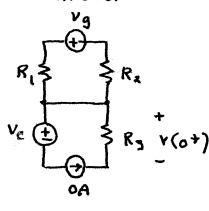


Since C = open, i = 0A.

No current flows around the loop, so there is no v-drop across the resistors.

Thus, vg must appear across C. So va = vg.

At t=0^t, we model the L and C' as sources.



Because of wire thru the middle, we may ignore the top half of the circuit.

V(0+) If we consider the bottom half of the circuit, the L looks like an open. Thus, no current flows thru R3, and there is no v-drop across R3.

Thus, $V(0^+) = 0A$.

To find $\frac{dv}{dt}$, a standard approach is to first write a circuit eg'n relating v to energy vars i, and v_c . Then we will be able to differentiate the eg'n and convert $\frac{di}{dt}$ to $\frac{dv_c}{dt}$ to $\frac{dv_c}{dt}$ to $\frac{dv_c}{dt}$.

It is easier to write an egh for v in terms of i and va if we replace the L and C with sources called il and ve. Again, we may use only the bottom half of the circuit.

$$V_c \bigoplus_{i_L} R_3 \stackrel{+}{V}$$

Ve flows thru R3 (but in the opposite direction from the passive sign convention.

$$V = -i_L R$$

Differentiate the egn:

$$\frac{dv = -di_L \cdot R}{dt} = -\frac{v_L \cdot R}{L}$$

Now, (after differentiating), evaluate at t=0+

$$\frac{dv}{dt}\Big|_{t=0}$$
 = $-\frac{V_L(0^+)R}{L}$

Earlier, in our t=0+ circuit, we found $v(o^+)=0$. So for a v-loop around the bottom of the circuit will give the result that $v_L = -v_q$.

$$\frac{dv}{dt}\Big|_{t=0} + = -v_g R = v_g \frac{R}{L}$$

b) If $s_1 = s_2$, then we have critical damping, so $s_1 = s_2 = -\alpha$, $\sqrt{\kappa^2 - \omega_0^2} = 0$ After t = 0, the circuit (lower half) is a series RLC.

$$K = \frac{R}{2L} \qquad \omega_0^2 = \frac{1}{LC}$$
So we have
$$\sqrt{\frac{R}{2L}^2 - \frac{1}{LC}} = 0.$$
or
$$\frac{R}{2L}^2 = \frac{1}{LC}$$
or
$$\frac{R^2}{4L^2} = \frac{1}{LC}$$

We can turn the two sides upside down.

$$\frac{4L^{2}}{R^{2}} = LC$$

$$C = \frac{4L^{2}}{R^{2}L} = \frac{4L}{R^{2}} = \frac{4 \cdot 3.3 \mu F}{2^{2}}$$
(we use $R = R_{3} = 2.52$.)