
 2260 HOMEWORK #1 prob 3 solution
F 10

EX:

After being closed for a long time, the switch opens at t = 0.
L = 10 nH C = 250 nF R1 = 0.1 Ω R2 = 0.025 Ω
If vs = 10 V, find v(t) for t > 0.

SOL'N: We may perform the following initial steps in any order:

1) Find characteristic roots for the parallel RLC circuit (for t > 0)

2) Find the final value of v(t) as t -> ∞, which is the A3 (constant)
term in the solution.

3) Find the initial values of energy variables: iL(0+) = iL(0–) and
vC(0+) = vC(0–)

We will perform the steps in the order listed.  First, we find the
characteristic roots.

€ 

s1,2 = −α ± α2 −ωo
2

After time t = 0, the voltage source and switch will be disconnected from
the circuit and may be ignored.  The two resistors in series then sum to
give R = R1 + R2 = 0.1 Ω + 0.025 Ω = 0.125 Ω.  We have a parallel RLC
circuit for which the value of α is one-half the inverse RC time constant:

€ 

α =
1

2RC
=

1
2 ⋅ (0.125)Ω⋅ 250nF

=16 M/s

For both parallel and series RLC circuits, the resonant frequency, ωo, is
the inverse of the square root of the product of L and C:

€ 

ωo
2 =

1
LC

=
1

10 nH ⋅  250 nF
= (20M)2 r/s( )2

Substituting into the equation for the roots yields the following:



€ 

s1,2 = −16 Mr/s ±  162  − 202   Mr/s = −16 Mr/s ± j12 Mr/s

The roots are complex, and the imaginary part of the roots is the damping
frequency:

€ 

ωd = ωo
2 −α2 =12 Mr/s

For complex roots, we use the following form of solution (that allows us
to avoid using complex numbers in our calculations):

€ 

v(t) = A1e
−αt cos(ωd t) + A2e

−αt sin(ωd t) + A3

Now we proceed to step 2, where we find the A3 value from v(t) as t->∞.
(The exponential terms decay as t->∞, leaving only A3.)  We assume the
circuit values become constant as t->∞, causing the L to act like a wire and
the C to act like an open circuit.  The switch is also open, detaching the
voltage source and resistor on the left, as shown in the diagram below.

Since the L  acts like a wire that shorts out the capacitor, we have
A3 = v(t->∞) = 0V.

Third, we find the initial values of energy variables: iL(0+) = iL(0–) and
vC(0+) = vC(0–).  At t = 0–, we assume circuit values are constant, causing
the L to act like a wire and the C to act like an open circuit.  The switch is
closed, connecting the parallel RLC to the voltage source on the left.



The L, acting like a wire, shorts out the C.  Thus, the initial C voltage is
zero:

vC(0+) = vC(0–) = 0V

Also, the two R's are in parallel across the voltage source.  The current
flowing through the L will equal the current flowing through R2, (since the
current flowing through R2 cannot flow through C).  Since vs is across R2,
we use Ohm's law to find the current in R2 and L:

€ 

iL (0−) =
vs
R2

=
10 V

0.025 Ω
= 400 A

The current in L at time 0+ is the same as at time 0–, since the energy in
the L cannot change instantly:

€ 

iL (0
+) = iL (0

−) = 400 A

At time t = 0+, we treat the C as a voltage source of 0V and the L as a
current source of 400 A.  (The switch is also open, removing the vs source
from the circuit.)  We can solve the circuit for any voltage or current at
t = 0+.  Using Kirchhoff's laws for voltage loops and current sums at
nodes, we have the following results, (with voltages measured with plus
on top, and currents measured flowing in the down direction):

€ 

vL (0+) = vC (0+) = vC (0−) = 0 V

€ 

iR1(0+) = iR2(0+) =
vC (0+)
R1 + R2

=
0 V

125 mΩ
= 0 A

No current flows through the R 's, so all the current in the L must flow
through the C (but in the negative direction, since we are measuring
currents in the down direction):



€ 

iC (0+) + iL (0+) + iR2(0+) = iC (0+) + 400A + 0 A ⇒ iC (0+) = −400A

Now we are ready to find A1 and A2 by matching our symbolic solution to

circuit values for v(0+) and 

€ 

dv(t)
dt t=0+

.  We have already found v(0+) to

be 0 V.  Matching this to the symbolic solution for t = 0+, which is A1, we
have the following:

A1 = 0V

For the value of the derivative in the circuit, we always try to first write
our variable, (v in this case), in terms of energy (or state) variables, iL
and/or vC.  Here, this is a simple matter:

€ 

v(t) = vC (t)

Then we differentiate, and use the component equations involving d/dt for
L and/or C:

€ 

d
dt
v(t)

t=0+
=
d
dt
vC (t)

t=0+
=
iC (0+)
C

=
−400 A
250 nF

= −16 GV/s

We equate this to the symbolic derivative:

€ 

d
dt
v(t)

t=0+
= −αA1 +ωd A2 =ωd A2 = −16 GV/s

or

€ 

A2 =
−1.6 GV/s

ωd
=
−1.6 GV/s
12Mr/s

= −133.3V

Plugging in values gives the solution for v(t > 0):

€ 

v(t) = −133.3e-16 M/s⋅t sin(12Mr/s⋅ t)V


