

1.



After being in position **a** for a long time, the switch moves to position **b** at time t = 0.

Find a symbolic expression for the Laplace-transformed output,  $V_0(s)$ , in terms of not more than  $R_1$ ,  $R_2$ , L, C, and values of sources or constants.

2. Choose a numerical value for  $R_1$  to make

$$v_1(t) = v_m e^{-\alpha t} [\cos(\beta t) - \sin(\beta t)]$$

where  $v_m$ ,  $\alpha$ , and  $\beta$  are real-valued constants.

Hint:  $R_1$  behaves as though it is in parallel with L and C.

Hint:  $s = s + \alpha - \alpha$ .



Given  $\omega = 1 \text{M rad/s}$ , find the value of C that makes  $z_{\text{LY}} = -j1.01 \,\Omega$ . Note that  $z_{\text{LY}}$  is the equivalent impedance of the entire circuit.

4.



For the above 3-phase balanced circuit, find the single-phase equivalent model.

5. For the above 3-phase balanced circuit, find the numerical value of the phasor voltage  $V_{bB}$ .