1. After being in position **a** for a long time, the switch moves to position **b** at time t = 0. Find a symbolic expression for the Laplace-transformed output, $V_0(s)$, in terms of not more than R_1 , R_2 , L, C, and values of sources or constants. 2. Choose a numerical value for R_1 to make $$v_1(t) = v_m e^{-\alpha t} [\cos(\beta t) - \sin(\beta t)]$$ where v_m , α , and β are real-valued constants. Hint: R_1 behaves as though it is in parallel with L and C. Hint: $s = s + \alpha - \alpha$. Given $\omega = 1 \text{M rad/s}$, find the value of C that makes $z_{\text{LY}} = -j1.01 \,\Omega$. Note that z_{LY} is the equivalent impedance of the entire circuit. 4. For the above 3-phase balanced circuit, find the single-phase equivalent model. 5. For the above 3-phase balanced circuit, find the numerical value of the phasor voltage V_{bB} .