ECE 2240 PRACTICE EXAM #3 prob 3 solution ]
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The current source is a dc current source. After being open for a long time, the

switch is closed at t = 0.

a)  Write an expression for V(s), the Laplace transform of v().
b)  From V(s), the Laplace transform of v(¢), find the numerical values of v(¢) for

t=0%and t — oo.

c) By taking the inverse Laplace transform of V(s), write a numerical time-domain
expression for v(z).
sol'n: (a) First we find initial conditions for L and C. (We need these for s-domain models of
Land C))

For t =0-, L acts like short, C acts like open circuit.
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When we close the switch, we short out the first R.

s-domain model:
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Note: A DC source corresponds to a step function even if there is no switch and

the source has the same output for all time. Thus, we have Ig/s as the

source in the s-domain. (Conceptually, we only need the current source for
t > 0 because the initial conditions on L. and C account for what the current
source did for t <0.)
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Note: We may choose either a series sL and V-source for L or a parallel sL and
I-source for L. Here, the parallel I-source model is more convenient. The

same applies to the C.

Normally, we might use superposition at this point, turning on the I-sources one at a

time and then summing currents or voltages to get a final answer.

Here, however, we have parallel I-sources that sum:
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Combining the parallel impedances and using V = Iz, we have
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To compute the parallel z value, we factor out numerators and use the following

identity:
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Thus, we factor out sL and R:
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Now divide by RLC to get denominator in proper form:
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Check: Using the numerator and the first term in the denominator, we have the
following units analysis:
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Thus, we have an impedance as we should have. The other terms in the
denominator have the same units as s2 since the units of s are, ironically,

1/sec or 1/s.

Now we plug in numbers to compute V(s):
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quadratic poles term

Find poles for quadratic term in preparation for partial fractions:
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512 =-125k + 75k rad/s (based on 52 — 42 = 32 pythagorean triple)
s1 =-50k, sp =200 rad/s

Now use partial fractions:
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sol'n: (b) Use the initial value theorem to find v(t=0%):
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The largest power of s dominates in the numerator and in the denominator.
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Note: We expect v(0*) =2V since this is the initial capacitor voltage.

Use the final value theorem to find v(t—°):
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sol'n: (c¢)

Note: We expect v(t) to decay, since L becomes a short.
From part (a) we have
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Use the standard inverse Laplace transform term:
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This gives the final answer:
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