Ex:

Using superposition, derive an expression for v_1 that contains no circuit quantities other than i_s , v_s , R_1 , R_2 , R_3 , and α , where $\alpha > 0$.

SOL'N: We turn on one independent source at a time. Note that we do not turn off the dependent source, since it acts like a resistor. We may find that I dependent source has a value of zero, however.

case I: vs on, is off (open)

No current flows in R3, so $V_{X1} = 0 V$.

Since $v_x = oV$, $\alpha v_x = oV$ too, and the dependent source acts like a wire.

We have a v-divider.

$$V_{11} = v_5 \frac{R_1}{R_1 + R_2}$$

case II: vs off, is on (wire)

Because R_3 is in series with i_{\sharp} , we use Ohm's law to calculate $v_{\chi 2}$.

$$V_{X2} = -igR_3$$

the dependent source is a voltage source between two circuits. Consequently, we treat the top and bottom halves as separate circuits, each with an XV_{X2} source.

The top half of the circuit:

This is a voltage divider.

$$v_{12} = -\alpha i \pm R_3 \frac{R_1}{R_1 + R_2}$$

Now we sum the results.

$$v_1 = v_{11} + v_{12} = (v_5 - \alpha i_5 R_3) \frac{R_1}{R_1 + R_2}$$