Ex:

A linear circuit has a Thevenin equivalent, as shown above. Now suppose that components are added to that circuit as shown below.

- a) Find the Thevenin equivalent circuit at terminals a'-b' in terms of the original v_{Th} and R_{Th} and the added R_{1} . (Note that this is the circuit with only R_{1} added to it.)
- b) Find the Thevenin equivalent circuit at terminals a"-b" in terms of the original v_{Th} and R_{Th} and the added R_1 and R_2 .

SOL'N: a) The v_{Th} for a', b' is the voltage across a', b' with nothing connected as a load across a', b'.

This is a voltage divider.

$$v_{Th}' = v_{Th} \frac{R_1}{R_1 + R_{Th}}$$
 or $v_{Th}' = v_{Th} \frac{1}{1 + R_{Th}/R_1}$

To find Rth, we turn off vth and look in from a', b'.

b) With R_2 connected to the output of the Thevenin equivalent, the Thevenin equivalent voltage remains v_{Th} , and the Thevenin equivalent resistance is $R_{Th} + R_2$, since the R's are in series.

$$v_{Th}^{"} = v_{Th}^{"} = v_{Th} \frac{R_{th}}{R_{t} + R_{Th}}$$

$$R_{Th}^{"} = R_{Th}^{"} + R_{2} = R_{1} || R_{Th} + R_{2}$$