ELCLE 2240 HOMEWORK #11 prob 2 solution U
N. Cotter F13

EX: Compute the Laplace transform of the following functions by calculating the integral

expression for the Laplace transform (step-by-step by hand):

0 t<0

a) f(®)=u(t)—u(t—1) where u(t) is the unit step function: u(t)= { | 0<;

0 t<0
b J)= { e_zt 0<t
0 r<4

SOL'N: a) We can separate the integral into two pieces.
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The step function is equal to unity or zero and has the effect of changing

the limits on the integral.
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We assume that the value of s has a positive real part so that the upper

limit of the integral equals zero.
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We assume that the value of s has a positive real part so that the upper

limit of the integral equals zero.
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¢) We set the lower limit of the integral to zero to account for the part of f(7)

that is zero.
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As before, we assume that the value of s has a positive real part so that the

upper limit of the integral equals zero.
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