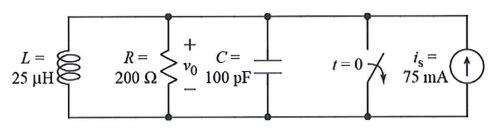
U

Ex:



After being closed for a long time, the switch opens at t = 0.

The inductor carries no current at $t = 0^-$.

The characteristic roots of the circuit are

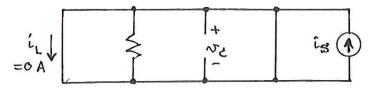
$$s_1 = -20 \,\text{Mr/s}$$
 and $s_2 = -30 \,\text{Mr/s}$.

The voltage across the resistor, v_0 , has the following over-damped form:

$$v_0(t>0) = A_1 e^{s_1 t} + A_2 e^{s_2 t} + A_3$$
 where $A_3 = 0$ V

- a) Find the numerical value of $v_0(t = 0^+)$.
- b) Find the numerical value of $\frac{dv_0(t)}{dt}\Big|_{t=0^+}$
- c) Using the answers for (a) and (b), find the numerical values of A_1 and A_2 . Note: if you do not have values for (a) and (b), make up non-zero values for them and solve the problem (for partial credit).
- sol'n: a) To determine what is happening at $t=0^+$, we find the energy variables $i_L(0^-)$ and $v_d(0^-)$ at $t=0^-$. The value of $i_L(0^-)$ is given as zero in the problem statement. (Without this information we would be unable to determine how is splits between the L and the switch.)

t=0: L=wire, C=open, switch closed

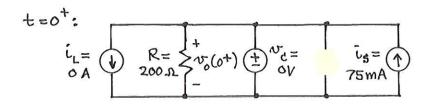


The C is shorted by both the L and the switch. Thus, $v_c(o^-) = oV$.

Since in and ve are energy variables, they will not change instantly.

$$i_L(0^+) = i_L(0^-) = 0A$$
 and $v_C(0^+) = v_C(0^-) = 0V$

At t=0+ we treat the Land C as sources.



In this circuit, the R is in parallel with ve and has the same v-drop as C.

b) to find the value of $\frac{dv_0(t)}{dt}|_{t=0}^t$, we express v_0 as a function of energy variables i_L and v_d . Then we differentiate i_L and v_d on one side of the expression and use $\frac{di_L}{dt} = v_L$ and/or $\frac{dv_C}{dt} = \frac{i_C}{c}$ to translate the $\frac{dv_C}{dt} = \frac{i_C}{c}$ to the other

derivatives into non-derivatives. On the other side of the expression for vo we differentiate to get dvo/dt. At this point, we have an expression for dvo in terms of dt | t=0^t

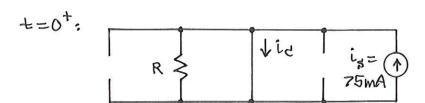
 $V_L(0^+)$ and/or i_c(0⁺), which we can find from our model of $t=0^+$.

Here, $v_0(t) = v_c(t)$ since they are in parallel.

So
$$\frac{dv_0(t)}{dt} = \frac{dv_c(t)}{dt} = \frac{i_c(t)}{c}$$
.

Evaluate at
$$t=0^+$$
: $\frac{dv_0(t)}{dt}\Big|_{t=0^+} = \frac{i_c(t=0^+)}{c}$

Going back to our t=0+ model, we see that the L is an open and C is a short.



The current from is will all flow thru C.

$$i_c(0^+) = i_s = 75 \text{ mA}$$

 $\frac{dv_o(t)}{dt}\Big|_{t=0^+} = \frac{i_c(0^+)}{C} = \frac{75 \text{ mA}}{100 \text{ pF}} = 750 \text{ MV/s}$

c) For the symbolic soln we have

$$v_0(0^+) = A_1 + A_2$$
 and $\frac{dv_0(t)}{dt}\Big|_{t=0^+} = A_1 s_1 + A_2 s_2$
Thus,
 $A_1 + A_2 = 0V$ and $A_1(-20Mr/s) + A_2(-30Mr/s)$
or $= 750 \text{ MV/s}$
 $A_2 = -A_1$ so
 $A_1(-20) - A_1(-30) = 750V$
or $A_1(30-20) = 750V$
or $A_1 = 750V = 75V$
and $A_2 = -A_1 = -75V$