U

Ex:

For the circuit shown, write (but do not solve) three independent equations for the node voltages v_1 , v_2 , and v_3 . The quantity v_x must not appear in the equations.

sol'n: We use the node-v method. We observe that v_2 and v_3 are connected by only a v-source and so form a super-node. For the dependent source, we define v_x in terms of node voltages. This is a good place to start.

 $v_x = v_3 - v_2 = v_8$ (This last step is optional but helpful.)

Now we can write an eg'n for node vi.

(1)
$$\frac{v_1 + \alpha (v_3 - v_2) - v_2}{R_1} + \frac{v_1 - v_3}{R_2} + i_5 = 0A$$

Note that we could also replace the v3-vz term with vs.

The super-node for v_2 and v_3 has a voltage eg'n and a current eg'n. The voltage eg'n is simple.

(2)
$$v_5 = v_3 - v_2$$
 or $v_2 + v_5 = v_3$

For the super-node current summation, we start with a bubble around v_2 , v_3 , and v_3 . Closer inspection, however, reveals that R_3 also connects v_2 to v_3 . Thus, the current in R_3 will be computed in both directions and will cancel out in the i-sum. So we put R_3 in the bubble, too.

The sum out of the bubble is as follows:

(3)
$$\frac{V_2 - \left[v_1 + \alpha \left(v_3 - v_2\right)\right]}{R_1} + \frac{v_3 - v_1}{R_2} + \frac{v_3}{R_4} + \frac{v_3}{R_5} = 0A$$

Egíns (1)-(3) are the desired answer.