Ex:

The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for v_0 in terms of not more than v_{s1} , v_{s2} , R_1 , R_2 , and R_3 .

soln: Using Kirchhoff's and Ohm's laws, we start by labeling the directions of voltage and current measurements. One possibility for the labeling is shown below. We also replace the op-amp with a voltage source vo.

Now we write egins for v-loop and i-sums, making sure we have a v-loop that passes through the OV drop that we assume exists across the inputs of the op-amp.

v-loop on left: +i, R, +OV -iz R2 - V52 = OV

v-loop lower middle: +vsz + i2Rz - i3R3 = OV

v-loop outside: +i_R, - vs1 - vo = ov

The only node not connected to another node by only a v-source is at the + input of the op-amp.

$$i_2 = -i_3$$

Now we solve the egins to find an expression for vo.

Substitute for is in 2nd v-loop.

We can solve for iz.

or

$$i_2 = -\frac{v_{52}}{R_2 + R_3}$$

Now we can use i_2 to find i_1 from the 1st v-(oop.

$$i_1 R_1 + oV - - \frac{v_{52} R_2 - v_{52}}{R_2 + R_3} = oV$$

or
$$i_{1} = \frac{v_{s2}}{R_{1}} \left(\frac{1 - \frac{R_{2}}{R_{2} + R_{3}}}{R_{2} + R_{3}} \right) = \frac{v_{s2}}{R_{1}} \left(\frac{\frac{R_{2} + R_{3} - R_{2}}{R_{2} + R_{3}}}{R_{2} + R_{3}} \right)$$
or
$$i_{1} = \frac{v_{s2}}{R_{1}} \frac{R_{3}}{R_{2} + R_{3}}$$

Using this value for i_1 , the outer v-loop yields an expression for v_0 .

$$v_0 = i_1 R_1 - v_{S1} = v_{S2} \frac{R_3}{R_2 + R_3} - v_{S1}$$

An alternative approach is to use the Node-V method. We assume a OV drop across the op-amp inputs, and we start by finding node voltage vp.

We have v-divider consisting of v_{sz} , R_{z} , and R_{3} .

$$v_p = v_{32} \frac{R_3}{R_2 + R_3}$$

The vn node has the same voltage as vp.

We would normally now use an i-sum at the v_n node, but we see that v_o differs from v_n by v_{s1} .

$$v_0 = v_n - v_{51}$$
or
$$v_0 = v_p - v_{51}$$
or
$$v_0 = v_{52} \frac{R_3}{R_2 + R_3} - v_{51}$$