Given the resistor connected as shown and using not more than one each R, L, and C in the dashed-line box, design a circuit to go in the dashed-line box that will produce the **band-pass** $|H(j\omega)|$ vs. ω shown above. That is:

\[
\max_{\omega} |H(j\omega)| = \frac{1}{4} \quad \text{and occurs at } \omega_0 = 10 \text{ M r/s}
\]

The bandwidth, β, of the filter is 500k r/s.

\[
|H(j\omega)| = 0 \quad \text{at } \omega = 0 \quad \text{and} \quad \lim_{\omega \to \infty} |H(j\omega)| = 0
\]

Sol'n: To achieve the peak at ω_0, we may use a series LC in the top rail or a parallel LC from the top to bottom rail. To achieve a gain of $1/4$ at ω_0, we must use a vertical resistance to form a V-divider with R.
We have two possible circuit configurations:

Series configuration

Parallel configuration

Note: \(R_1 \) must be to the right of \(L \) and \(C \) in order to have any effect from the \(L \) and \(C \) in the series configuration.

For the series configuration, the \(L \) and \(C \) are to act like a wire at \(\omega_0 = 10 \text{ M rad/s} \).

\[
j\omega_0 L + \frac{1}{j\omega_0 C} = 0 \quad \text{or} \quad \omega_0^2 = \left(10 \text{ M rad/s}\right)^2 = \frac{1}{LC}
\]

The bandwidth when using a series \(L \) and \(C \) is

\[
\beta = \frac{R_{eq}}{L} = 500 \text{ kHz}
\]

To determine the value of \(R_{eq} \), we view the filter as a standard RLC filter and a V-divider.

\[
H(j\omega) = \frac{V_o'}{V_i} \quad H'(j\omega) = H(j\omega) \cdot \frac{R_1}{R + R_1}
\]
The cutoff frequencies for $H(j\omega)$ are the same as the cutoff frequencies for $H'(j\omega)$:

$$
\omega_{c1,2} = \pm \frac{R_{eq} \pm \sqrt{(R_{eq})^2 + \omega_0^2}}{2L}, \quad \beta = \frac{R_{eq}}{L}
$$

where $R_{eq} = R + R_1 = 400 \Omega$.

Using $\beta = \frac{R_{eq}}{L}$, we find L:

$$
L = \frac{R_{eq}}{\beta} = \frac{400 \Omega}{500 \text{kr} \cdot \text{s}} = 0.8 \text{ mH or } 800 \text{ } \mu\text{H}
$$

Using $\omega_0^2 = \frac{1}{LC}$ and $L = 800 \text{ } \mu\text{H}$, we find C:

$$
C = \frac{1}{\omega_0^2 L} = \frac{1}{10^4 \cdot 10^6 \cdot 800 \text{ } \mu\text{F}} = \frac{1 \text{ } \mu\text{F}}{80 \text{ } \text{K}}
$$

$$
C = 12.5 \text{ } \mu\text{F}
$$

Summary of series RLC: $R_1 = 100 \Omega$, $L = 800 \text{ } \mu\text{H}$, $C = 12.5 \text{ } \mu\text{F}$

For the parallel configuration, we move R_1 to the left of L and C and use a Thévenin equivalent of V_i, R, and R_1.

![Parallel Configuration Diagram]

Where $V_{10} = 500 \text{ } \text{V}$.
To find the Thévenin equivalent, we find \(V_{\text{Th}} \) by finding the open-circuit of the \(V_i, R_j \) and \(R_k \) circuit.

\[
\begin{align*}
V_i \quad & \begin{array}{c}
\oplus \\
\downarrow
\end{array} \quad R_j \quad \begin{array}{c}
\oplus \\
\downarrow
\end{array} \\
= & \quad \begin{array}{c}
\oplus \\
\downarrow
\end{array} \quad R_k \quad \begin{array}{c}
\oplus \\
\downarrow
\end{array} \quad 100 \Omega \\
& \quad \begin{array}{c}
\oplus \\
\downarrow
\end{array} \\
& a \\
& b
\end{align*}
\]

\[
V_{\text{Th}} = \frac{V_i \cdot R_j}{R_j + R_k} = \frac{V_i}{4}
\]

To find \(R_{\text{Th}} \), we turn off \(V_i \) and look in from terminals a and b. The resistance seen is

\[
R_{\text{Th}} = R \parallel R_j \parallel 300 \Omega \parallel 100 \Omega = 75 \Omega
\]

Using the filter with the Thévenin equivalent, we have

\[
H(j\omega) = \frac{V_o}{V_i} = \frac{R_k}{R_j + R_k} \quad \frac{V_o}{V_i} = \frac{1}{4} H'(j\omega)
\]

where \(H'(j\omega) = \frac{V_o}{V_{i'}} \) where \(V_{i'} = \frac{R_k}{R_j + R_k} V_i \)

The cutoff frequencies of \(H'(j\omega) \) are the same as the cutoff frequencies of \(H(j\omega) \).

\[
\omega_{c1,2} = \pm \frac{1}{\sqrt{\frac{2RC}{T_h}}} \sqrt{\left(\frac{1}{2RC}\right)^2 + \omega_0^2}, \quad \beta = \frac{1}{\sqrt{RC}}
\]

\[
\omega_0 = \frac{1}{\sqrt{LC}}
\]

Using \(R_{\text{Th}} \) and \(\beta \), we find \(C \):

\[
C = \frac{1}{R_{\text{Th}}^2} = \frac{1}{75 \Omega \cdot 500k \Omega} = 26.6 \text{ nF}
\]

Using \(L \) and \(\omega_0^2 \), we find \(L \):

\[
L = \frac{1}{\omega_0^2 C} = \frac{1}{10M10M 26.6n} = 375 \text{ nH}
\]