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The voltage source in the above circuit is off (0 V) for # < 0.

An engineer wishes to use the above circuit to create two decaying sinusoidal signals
120° out-of-phase to drive a three-phase motor for a short time. (A third signal that is

120° out-of-phase with the first two may be created by an additional op-amp circuit,
not shown, that computes —vy —v,.) The signal at v((#) will necessarily be a decaying

sinusoid of the following form:
vo(t) = —v,,e”* sin( Br)
where vy, 0., and [ are positive real-valued constants.

The design problem now is to create a v{(¢) signal that is 120° out-of-phase with v(%).

a) Find a symbolic expression for the Laplace-transformed output, Vi(s), in terms
of not more than R1, R, R3, L, C, and values of sources or constants.

b)  Choose a numerical value for C to make
v () = ve” ¥ cos(Bt—30°).

Hint: cos(A—B)=cosAcosB+sinAsinB
bonus)  Why could the desired v;(¢) not be obtained if the positions of the L and C were

reversed?

SoL'N: a) The input voltage source is a step function that Laplace transforms to 1/s.

Vi(s)= !
S

Before time zero, the input voltage is zero and it follows that initial

conditions for both the L and C are zero.



At the — input of the op-amp, we have the same voltage (because of the

negative feedback) as at the + input, namely zero volts.

We can express the current flowing toward the — input as the input voltage
divided by the sum of impedances up to the — input. This is true in the

Laplace domain and is just an example of Ohm's law.
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where R represents R| + R,.

To find V(s), we observe that we may use the voltage drop across L and

R,. Again, we use Ohm's law, multiplying the impedances of L and R, by
I(s).
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The second form for the answer will figure into our solution to (b).

b) Using the hint, we rewrite the expression for v in terms of sine and

cosine.
v ()= vme_at [cos(Br)cos(30°) + sin(Bt)sin(30°)]

or
vi(t) = vme_m {cos(ﬁt)g + sin(ﬂt)%}

We Laplace transform the expression for v{(z).
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Matching the denominator to our answer from (a), we identify the values
of o and .
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We can calculate the numerical value of o.
R 4+8
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Now we turn our attention to the numerator of V(s).
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From the solution to (a), the coefficient of s is unity, which dictates the
necessary value of v,,.

2
Vv, =
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Now we consider the constant term of the numerator, which must map the
solution from (a). Using our value of v,, and the solution to (a) gives the

following equation.
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or, if we subtract R,/2L from both sides, we have the following equation:

R, 1y R
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A few calculations:
ﬁ: r/s=1k &z 8 r/s=2k
2L 2(2m) and 2L 2(2m)



Using these values, we have an equation for 3.
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or, using the expression for B from earlier, we have the following:
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L3P =3m
LC
or
L =12M
2mC

Finally, we can solve for C.
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bonus) With the C on the right, v{(#) would end up at 1 V as the C would charge.

Thus, the signal could not be a decaying sinusoid. It would have a DC
offset.



