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Note: The first 5A portion of ig(1) is always on.
a)  Write the Laplace transform Ig(s) of ig(2).

b)  Draw the s-domain equivalent circuit, including source Ig(s), components, initial

conditions for L and C, and terminals for V,(s).

c¢)  Write the Laplace transform V,(s) of vy(f). Write your answer as a ratio of

polynomials in s with numerical coefficients.

d)  Write a numerical time-domain expression for v(#) where ¢ = 0.

SOL'N: a) The 5 A portion of the current source acts like Su(t) for = 0~ to © where
the Laplace transform is computed.
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b) To find initial conditions, we use the time-domain circuit at # = 0~ with the
C treated as an open circuit and the L treated as a wire. The 5 A portion of

the current source will be on, and the second term of the current source

will be off.
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The current will all flow in the wire that models the L.
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Given the parallel form of the circuit, using a parallel current source for
the initial conditions of the L is prudent. The current source corresponds

to a step function that turns on a current in parallel with the L at time zero.
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The capacitor will have zero initial conditions since it is shorted out by the

wire modeling the L.
ve(0)=0V

The source for initial conditions on the C may be omitted.
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¢) We sum the current sources, which results in some convenient

cancellation. The output voltage will be the total current times the total

parallel impedances.
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We clear the denominator of the denominator and get a coefficient of unity

for the s2 coefficient.
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d) We factor the quadratic polynomial in the denominator so it matches the
form found in the Laplace transforms of decaying cosine and sine.
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We expand the output voltage in a modified partial fraction form.
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We use the method of multiplying by the pole and evaluating at the pole to
find the value of A.
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Having found A, we put terms over a common denominator.
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For the polynomials in the numerator to be equal, the coefficients of each

power of s must be equal.

2(52 +25+5)+[B(s+1)+C(2)](s +2)=-5s
We group the coefficients of powers of s.

2(s% +25+5)+ B(s? +35+2)+ C(2s +4) = =55
or

(2+B)s2 +(4+3B+2C)s+(10+2B+4C)=-5s

From the s2 coefficient, which equals zero (on right side of equation), we
find the value of B.

B=-2
From the constant coefficient, which equals zero (on right side of
equation), we find the value of C.
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We check our answer by trying some values of s in our original expression
for V,(s) and in our modified partial fraction expression for V(s).
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Having verified our expansion, we take the inverse Laplace transform.
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