Ex:

\[i_g(t) = 5 - 5e^{-2t}u(t) \text{ A} \]

Note: The first 5A portion of \(i_g(t) \) is always on.

a) Write the Laplace transform \(I_g(s) \) of \(i_g(t) \).

b) Draw the \(s \)-domain equivalent circuit, including source \(I_g(s) \), components, initial conditions for \(L \) and \(C \), and terminals for \(V_o(s) \).

c) Write the Laplace transform \(V_o(s) \) of \(v_o(t) \). Write your answer as a ratio of polynomials in \(s \) with numerical coefficients.

d) Write a numerical time-domain expression for \(v_o(t) \) where \(t \geq 0 \).

Sol’N: a) The 5 A portion of the current source acts like \(5u(t) \) for \(t = 0^- \) to \(\infty \) where the Laplace transform is computed.

\[I_g(s) = \frac{5}{s} - \frac{5}{s+2} \text{ A} \]

b) To find initial conditions, we use the time-domain circuit at \(t = 0^- \) with the \(C \) treated as an open circuit and the \(L \) treated as a wire. The 5 A portion of the current source will be on, and the second term of the current source will be off.

\(t = 0^- \):

\[i_g(t) = 5 \text{ A} \]

The current will all flow in the wire that models the \(L \).

\[i_L(0^-) = 5 \text{ A} \]
Given the parallel form of the circuit, using a parallel current source for the initial conditions of the \(L \) is prudent. The current source corresponds to a step function that turns on a current in parallel with the \(L \) at time zero.

\[
\frac{i_L(0^-)}{s}
\]

The capacitor will have zero initial conditions since it is shorted out by the wire modeling the \(L \).

\[
V_C(0^-) = 0 \text{ V}
\]

The source for initial conditions on the \(C \) may be omitted.

c) We sum the current sources, which results in some convenient cancellation. The output voltage will be the total current times the total parallel impedances.

\[
V_o(s) = -\frac{5}{s+2} A \left(sL \parallel \frac{1}{sC} \parallel R \right) = -\frac{5}{s+2} \left(\frac{1}{sL + sC + \frac{1}{R}} \right)
\]

We clear the denominator of the denominator and get a coefficient of unity for the \(s^2 \) coefficient.

\[
V_o(s) = -\frac{5}{s+2} \left(\frac{s/C}{\frac{1}{sL} + sC + \frac{1}{R}} \right) = -\frac{5}{s+2} \left(\frac{s/C}{s^2 + \frac{1}{RC} + \frac{1}{LC}} \right)
\]

or

\[
V_o(s) = -\frac{5}{s+2} \left(\frac{s/C}{\frac{1}{LC} + \frac{1}{RC} + \frac{1}{s^2}} \right) = -\left(\frac{5}{s+2} \right) \left(\frac{s/C}{s^2 + \frac{1}{RC} + \frac{1}{sLC}} \right)
\]
or
\[V_o(s) = -\frac{5s}{(s+2)\left(\frac{s^2}{2} + \frac{1}{0.5}s + \frac{1}{0.2}\right)} = -\frac{5s}{(s+2)\left(s^2 + 2s + 5\right)} \]

d) We factor the quadratic polynomial in the denominator so it matches the form found in the Laplace transforms of decaying cosine and sine.
\[s^2 + 2s + 5 = (s+1)^2 + 2^2 = (s+a)^2 + \omega^2 \]
\[
\mathcal{L}\{e^{-at}\cos\omega t\} = \frac{s+a}{(s+a)^2 + \omega^2}
\]
\[
\mathcal{L}\{e^{-at}\sin\omega t\} = \frac{\omega}{(s+a)^2 + \omega^2}
\]
We expand the output voltage in a modified partial fraction form.
\[V_o(s) = -\frac{5s}{(s+2)\left(\frac{s^2}{2} + \frac{1}{0.5}s + \frac{1}{0.2}\right)} = \frac{A}{s+2} + \frac{B(s+1)+C(2)}{(s+1)^2 + 2^2} \]

We use the method of multiplying by the pole and evaluating at the pole to find the value of \(A \).

\[
A = V_o(s)(s+2)\bigg|_{s=-2} = -\frac{5s}{(s+1)^2 + 2^2}\bigg|_{s=-2} = -\frac{5(-2)}{(-2+1)^2 + 2^2}
\]
or
\[
A = V_o(s)(s+2)\bigg|_{s=-2} = -\frac{10}{5} = 2
\]
Having found \(A \), we put terms over a common denominator.
\[V_o(s) = \frac{2(s^2 + 2s + 5) + [B(s+1)+C(2)](s+2)}{(s+2)\left(\frac{s^2}{2} + \frac{1}{0.5}s + \frac{1}{0.2}\right)} \]
\[= -\frac{5s}{(s+2)\left(s^2 + 2s + 5\right)} \]
For the polynomials in the numerator to be equal, the coefficients of each power of \(s \) must be equal.

\[
2(s^2 + 2s + 5) + [B(s + 1) + C(2)](s + 2) = -5s
\]

We group the coefficients of powers of \(s \).

\[
2(s^2 + 2s + 5) + B(s^2 + 3s + 2) + C(2s + 4) = -5s
\]

or

\[
(2 + B)s^2 + (4 + 3B + 2C)s + (10 + 2B + 4C) = -5s
\]

From the \(s^2 \) coefficient, which equals zero (on right side of equation), we find the value of \(B \).

\[
B = -2
\]

From the constant coefficient, which equals zero (on right side of equation), we find the value of \(C \).

\[
10 + 2(-2) + 4C = 0
\]

or

\[
C = -\frac{3}{2}
\]

We check our answer by trying some values of \(s \) in our original expression for \(V_o(s) \) and in our modified partial fraction expression for \(V_o(s) \).

\[
V_o(s)\bigg|_{s=0} = \left[-\frac{5s}{(s + 2)(s + 1)^2 + 2^2} \right]_{s=0} = 0
\]

\[
\left[\frac{2}{s + 2} + \frac{-2(s + 1) - \frac{3}{2}(2)}{s^2 + 2s + 5} \right]_{s=0} = \frac{2}{2} + \frac{-2 - 3}{5} = 0 \text{ works } \checkmark
\]

and
Having verified our expansion, we take the inverse Laplace transform.

\[v_o(t) = L^{-1}\left\{ \frac{2}{s+2} + \frac{-2(s+1) - \frac{3}{2}(2)}{s^2 + 2s + 5} \right\} \]

or

\[v_o(t) = [2e^{-2t} - 2e^{-t}\cos 2t - \frac{3}{2}e^{-t}\sin 2t]u(t) \text{ V} \]