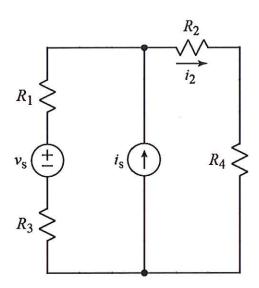
U

Ex:



- a) Derive an expression for i_2 . The expression must not contain more than the circuit parameters v_s , $i_s R_1$, R_2 , R_3 and R_4 .
- b) Derive an expression for the power dissipated by resistor R_4 . The expression must not contain more than the circuit parameters v_s , $i_s R_1$, R_2 , R_3 and R_4 .
- soln: a) Since there is no simple solution such as a V-divider or i-divider, we use Kirch-hoff's and Ohm's laws.



In the circuit diagram, only i's are shown, with the understanding that v's are given by Ohm's law: v=iR.

We have only one v-loop, (that avoids i-src's), around the outside of the circuit.

 $i_3R_3 + v_5 + i_1R_1 - i_2R_2 - i_4R_4 = 0v$ i_1 For current sums, we first look for R's in series that have the same current.
This gives $i_1 = i_3$ and $i_2 = i_4$.

Next we sum currents at the top (or bottom) node. Note that we only use one node, as the other node is redundant. Currents measured flowing into the top node total to the same value as currents measured flowing out of the top node.

We eliminate i, and then solve for iz.

$$i_1 = i_5 - i_2$$

substitute into the v-loop egn:

$$(i_{5}-i_{2})(R_{3}+R_{1}) + v_{5} - i_{2}(R_{2}+R_{4}) = 0V$$
or
$$-i_{2}(R_{1}+R_{2}+R_{3}+R_{4}) + i_{5}(R_{1}+R_{3}) + v_{5} = 0V$$
or
$$i_{2} = \underbrace{i_{5}(R_{1}+R_{3}) + V_{5}}_{R_{1}+R_{2}+R_{3}+R_{4}}$$

b) Power $p = i^{2}R$. R_{4} is in series with R_{2} , so $i_{4} = i_{2}$. $p = i_{2}R_{4} = \left(\frac{i_{3}(R_{1} + R_{3}) + V_{5}}{R_{1} + R_{2} + R_{3} + R_{4}}\right)^{2}R_{4}$